6,498 research outputs found

    Resonant Interactions Between Protons and Oblique Alfv\'en/Ion-Cyclotron Waves

    Full text link
    Resonant interactions between ions and Alfv\'en/ion-cyclotron (A/IC) waves may play an important role in the heating and acceleration of the fast solar wind. Although such interactions have been studied extensively for "parallel" waves, whose wave vectors k{\bf k} are aligned with the background magnetic field B0{\bf B}_0, much less is known about interactions between ions and oblique A/IC waves, for which the angle Īø\theta between k{\bf k} and B0{\bf B}_0 is nonzero. In this paper, we present new numerical results on resonant cyclotron interactions between protons and oblique A/IC waves in collisionless low-beta plasmas such as the solar corona. We find that if some mechanism generates oblique high-frequency A/IC waves, then these waves initially modify the proton distribution function in such a way that it becomes unstable to parallel waves. Parallel waves are then amplified to the point that they dominate the wave energy at the large parallel wave numbers at which the waves resonate with the particles. Pitch-angle scattering by these waves then causes the plasma to evolve towards a state in which the proton distribution is constant along a particular set of nested "scattering surfaces" in velocity space, whose shapes have been calculated previously. As the distribution function approaches this state, the imaginary part of the frequency of parallel A/IC waves drops continuously towards zero, but oblique waves continue to undergo cyclotron damping while simultaneously causing protons to diffuse across these kinetic shells to higher energies. We conclude that oblique A/IC waves can be more effective at heating protons than parallel A/IC waves, because for oblique waves the plasma does not relax towards a state in which proton damping of oblique A/IC waves ceases

    Convective Fingering of an Autocatalytic Reaction Front

    Full text link
    We report experimental observations of the convection-driven fingering instability of an iodate-arsenous acid chemical reaction front. The front propagated upward in a vertical slab; the thickness of the slab was varied to control the degree of instability. We observed the onset and subsequent nonlinear evolution of the fingers, which were made visible by a {\it p}H indicator. We measured the spacing of the fingers during their initial stages and compared this to the wavelength of the fastest growing linear mode predicted by the stability analysis of Huang {\it et. al.} [{\it Phys. Rev. E}, {\bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness dependence predicted by the theory.Comment: 11 pages, RevTex with 3 eps figures. To be published in Phys Rev E, [email protected], [email protected], [email protected]

    Effects of lattice distortion and Jahnā€“Teller coupling on the magnetoresistance of La0.7Ca0.3MnO3 and La0.5Ca0.5CoO3 epitaxial films

    Get PDF
    Studies of La0.7Ca0.3MnO3 epitaxial films on substrates with a range of lattice constants reveal two dominant contributions to the occurrence of colossal negative magnetoresistance (CMR) in these manganites: at high temperatures (T ā†’ TC, TC being the Curie temperature), the magnetotransport properties are predominantly determined by the conduction of lattice polarons, while at low temperatures (T ā‰Ŗ TC/, the residual negative magnetoresistance is correlated with the substrate-induced lattice distortion which incurs excess magnetic domain wall scattering. The importance of lattice polaron conduction associated with the presence of Jahnā€“Teller coupling in the manganites is further verified by comparing the manganites with epitaxial films of another ferromagnetic perovskite, La0.5Ca0.5CoO3. Regardless of the differences in the substrate-induced lattice distortion, the cobaltite films exhibit much smaller negative magnetoresistance, which may be attributed to the absence of Jahnā€“Teller coupling and the high electron mobility that prevents the formation of lattice polarons. We therefore suggest that lattice polaron conduction associated with the Jahnā€“Teller coupling is essential for the occurrence of CMR, and that lattice distortion further enhances the CMR effects in the manganites

    Source amplitudes for active exterior cloaking

    Full text link
    The active cloak comprises a discrete set of multipole sources that destructively interfere with an incident time harmonic scalar wave to produce zero total field over a finite spatial region. For a given number of sources and their positions in two dimensions it is shown that the multipole amplitudes can be expressed as infinite sums of the coefficients of the incident wave decomposed into regular Bessel functions. The field generated by the active sources vanishes in the infinite region exterior to a set of circles defined by the relative positions of the sources. The results provide a direct solution to the inverse problem of determining the source amplitudes. They also define a broad class of non-radiating discrete sources.Comment: 21 pages, 17 figure

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    Nonlinear Front Evolution of Hydrodynamic Chemical Waves in Vertical Cylinders

    Get PDF
    The nonlinear stability of three-dimensional reaction-diffusion fronts in vertical cylinders is considered using the viscous hydrodynamic fluid equations in the limit of infinite thermal diffusivity. A nonlinear front evolution equation is presented and used to examine the transition from nonaxisymmetric to axisymmetric convection observed in experiments performed in cylinders. Comparisons with experiments show excellent agreement in both the shape and speed of the front

    Hydrodynamic Instability of Chemical Waves

    Get PDF
    We present a theory for the transition to convection for flat chemical wave fronts propagating upward. The theory is based on the hydrodynamic equations and the oneā€variable reactionā€diffusion equation that describes the chemical front for the iodateā€“arsenous acid reaction. The reaction term involves the reaction rate constants and the chemical composition of the mixture. This allows the discussion of the effects of the different chemical variables on the transition to convection. We have studied perturbations of different wavelengths on an unbounded flat chemical front and found that for wavelengths larger than a critical wavelength (Ī»ā‰³Ī»c) the perturbations grow in time, while for smaller wavelengths the perturbations diminish. The critical wavelength depends not only on the density difference between the unreacted and reacted fluids, but also on the speed and thickness of the chemical front

    Finite Thermal Diffusivity at Onset of Convection in Autocatalytic Systems: Discontinuous Fluid Density

    Get PDF
    A linear convective stability analysis for propagating autocatalytic reaction fronts includes density differences due to both thermal and chemical gradients. Critical parameters for the onset of convection are calculated for an unbounded geometry, a vertical slab, and a vertical cylinder. Thermal effects are important at unstable wavelengths well above the critical wavelength for the onset of convection
    • ā€¦
    corecore