69 research outputs found
Optothermal Microbubble Assisted Manufacturing of Nanogap-Rich Structures for Active Chemical Sensing
Guiding analytes to the sensing area is an indispensable step in a sensing system. Most of the sensing systems apply a passive sensing method, which waits for the analytes to diffuse towards the sensor. However, passive sensing methods limit the detection of analytes to a picomolar range on micro/nanosensors for a practical time scale. Therefore, active sensing methods need to be used to improve the detection limit in which the analytes are forced to concentrate on the sensors. In this article, we have demonstrated the manufacturing of nanogap-rich structures for active chemical sensing. Nanogap-rich structures are manufactured from metallic nanoparticles through an optothermally generated microbubble (OGMB) which is a laser-induced micron-sized bubble. The OGMB induces a strong convective flow that helps to deposit metallic nanoparticles to form nanogap-rich structures on a solid surface. In addition, the OGMB is used to guide and concentrate analytes towards the nanogap-rich structures for the active sensing of analytes. An active sensing method can improve the detection limit of chemical substances by an order of magnitude compared to a passive sensing method. The microbubble assisted manufacturing of nanogap-rich structures together with an active analyte sensing method paves a new way for advanced chemical and bio-sensing applications
Assessing Magnetic Iron Oxide Nanoparticles Properties under Different Thermal Treatments
Magnetic nanoparticle structures have been examined as potential carrier vehicles and substrates in a wide range of applications where they undergo mechanical, chemical and/or thermal manipulation to allow for their modification, conjugation and transport. For safe and effective use, it is imperative to not only measure the initial physicochemical and structural properties of nanomaterials, but also identify and quantify any property changes related to a loss of chemical and/or physical integrity during processing and usage conditions. In this study an assessment of iron oxide magnetic nanoparticle thermal stability using modulated differential scanning calorimetry (mDSC) and a controlled-heating system is conducted on two types of iron oxide nanoparticles: maghemite (Fe2O3; 500 nm) with silanol surface functional groups and magnetite (Fe3O4; 200 nm) with primary amine terminated alkoxysilane surface functional groups. Modulated differential scanning calorimetry (mDSC) results revealed an endothermic peak at 388 K for both types of nanoparticles indicating possible molecular rearrangement within the structure. To confirm this result, iron oxide nanoparticles were heated while in aqueous suspensions at discrete temperatures ranges from 303 to 403 K. Calorimetry, FT-IR spectroscopy, and dynamic light scattering measurements were used to examine changes in the chemical and physical stability of the suspensions. Morphological characteristics were evaluated using optical microscopy, transmission electron microscopy, and atomic force microscopy. Results showed that the chemical and morphological structure of the nanocomposite is critical in determining the thermal performance of the iron oxide nanoparticles. Amine-terminated silane functionalized magnetite nanoparticles were highly susceptible to morphological and surface-chemistry changes starting at ca. 353 K. Conversely, silanol functionalized maghemite nanoparticles were shown to be stable in terms of morphology and chemical structure up to 403 K. Micrographs demonstrated variations in magnetic domains distribution after exposing the nanoparticles to thermal treatments, confirming the results obtained through mDSC and FT-IR measurements
Impact of Team Formation Approach on Teamwork Effectiveness and Performance in an Upper-Level Undergraduate Chemical Engineering Laboratory Course
This study focuses on the impact of team formation approach on teamwork effectiveness and performance spanning three years of instruction of the chemical engineering unit operations laboratory, which is an upper-level undergraduate laboratory course. Team formation approaches changed each year, and assessment tools, including peer-assessment, academic performance, and course evaluations, were employed to evaluate team performance. Approaches included three cases: instructor-selected teams based on GPA with the objective of a similar cumulative average GPA for each team, student self-selected teams, and a combination of self-selected teams with instructor-selected teams for a final experiment. For the third case, new teams were assigned based on a common interest to learn about a specific final laboratory experiment or research topic, and the instructor identification of both low- and high-performing students in the prior teams. Team effectiveness and performance were assessed using CATME, a teamwork VALUE rubric developed by the Association of American Colleges and Universities (AAC&U), and numerical peer-contribution forms. In addition, assigned team leaders for each experiment provided feedback regarding individual team member performance, including contributions to reports and presentations. Results demonstrated that less than five percent of the students presented team conflicts when students self-selected teams for the laboratory course; however, strong or weak teams were formed leading to unbalanced laboratory performance. On the contrary, course evaluation outcomes were improved when students were assigned to teams based on cumulative GPA or reassigned by the instructor for the completion of a final experiment. Overall, this study demonstrates that a combination of student-selected and instructor-selected teams during the same semester led to better course outcomes and enhanced individual experiences, as shown by the students’ evaluations of the laboratory course
Entrepreneurially Minded Learning in the Unit Operations Laboratory through Community Engagement in a Blended Teaching Environment
Online and blended learning opportunities in Chemical Engineering curriculum emerged due to COVID-19. After eight weeks of in-person Unit Operations Laboratory sessions, a remote-learning open-ended final project was assigned to student teams. The assignment involved aspects related to entrepreneurial-minded learning (EML) and community-based learning (CBL). Results show correlations between self-directed learning and the EML framework. Continuous support and involvement of a community partner correlate to students\u27
Computational and Experimental Approach to Understanding the Structural Interplay of Self-Assembled End-Terminated Alkanethiolates on Gold Surfaces
Applications of self-assembled monolayers (SAMs) on surfaces are prevalent in modern technologies and drives the need for a better understanding of the surface domain architecture of SAMs. To explore structural interaction at the interface between gold surfaces and a hydroxyl-terminated alkanethiol, 11-hydroxy-1-undecanethiol, (C11TH) we have employed a combined computational and experimental approach. Density functional theory (DFT) calculations were carried out on the thiol–gold interface using both the Perdew–Burke–Ernzerhof (PBE) and van der Waals (optB86b) density functionals. Our ab initio molecular dynamics (AIMD) simulations revealed that the interface consists of four different distinguished phases, each with different C11TH orientations. Experiments involved deposition of C11TH SAMs onto gold, with the resultant surfaces examined with X-ray photoelectron spectroscopy (XPS) and ellipsometry. Weighted average projected density of states (PDOS) of the different phases were photoionization cross section corrected and these were confirmed by experimental XPS data. Computed molecular parameters including tilt angles and the thickness of SAMs also agreed with the XPS and ellipsometry results. Hydrogen bonding arising from the terminal hydroxyl groups is the primary factor governing the stability of the four phases. Experimental results from XPS and ellipsometry along with DFT simulation results provide insights into the formation of the different orientations of SAM on Au(111) which will guide future efforts in the self-assembled SAMs architecture for other thiols or metal substrates
Fabrication and Characterization of Electrospun Poly(acrylonitrile-co-Methyl Acrylate)/Lignin Nanofibers: Effects of Lignin Type and Total Polymer Concentration
Lignin macromolecules are potential precursor materials for producing electrospun nanofibers for composite applications. However, little is known about the effect of lignin type and blend ratios with synthetic polymers. This study analyzed blends of poly(acrylonitrile-co-methyl acrylate) (PAN-MA) with two types of commercially available lignin, low sulfonate (LSL) and alkali, kraft lignin (AL), in DMF solvent. The electrospinning and polymer blend solution conditions were optimized to produce thermally stable, smooth lignin-based nanofibers with total polymer content of up to 20 wt % in solution and a 50/50 blend weight ratio. Microscopy studies revealed that AL blends possess good solubility, miscibility, and dispersibility compared to LSL blends. Despite the lignin content or type, rheological studies demonstrated that PAN-MA concentration in solution dictated the blend’s viscosity. Smooth electrospun nanofibers were fabricated using AL depending upon the total polymer content and blend ratio. AL’s addition to PAN-MA did not affect the glass transition or degradation temperatures of the nanofibers compared to neat PAN-MA. We confirmed the presence of each lignin type within PAN-MA nanofibers through infrared spectroscopy. PAN-MA/AL nanofibers possessed similar morphological and thermal properties as PAN-MA; thus, these lignin-based nanofibers can replace PAN in future applications, including production of carbon fibers and supercapacitors
Detection and Aggregation of Listeria monocytogenes Using Polyclonal Antibody Gold-Coated Magnetic Nanoshells Surface-Enhanced Raman Spectroscopy Substrates
Magnetic nanoshells with tailored surface chemistry can enhance bacterial detection and separation technologies. This work demonstrated a simple technique to detect, capture, and aggregate bacteria with the aid of end-functionalized polyclonal antibody gold-coated magnetic nanoshells (pAb-Lis-AuMNs) as surface-enhanced Raman spectroscopy (SERS) probes. Listeria monocytogenes were used as the pathogenic bacteria and the pAb-Lis-AuMNs, 300 nm diameter, were used as probes allowing facile magnetic separation and aggregation. An optimized covalent bioconjugation procedure between the magnetic nanoshells and the polyclonal antibody was performed at pH six via a carbodiimide crosslinking reaction. Spectroscopic and morphological characterization techniques confirmed the fabrication of stable pAb-Lis-AuMNs. The resulting pAb-Lis-AuMNs acted as a SERS probe for L. monocytogenes based on the targeted capture via surface binding interactions and magnetically induced aggregation. Label-free SERS measurements were recorded for the minimum detectable amount of L. monocytogenes based on the SERS intensity at the 1388 cm−1 Raman shift. L. monocytogenes concentrations exhibited detection limits in the range of 104–107 CFU ml−1, before and after aggregation. By fitting these concentrations, the limit of detection of this method was ∼103 CFU ml−1. Using a low-intensity magnetic field of 35 G, pAb-Lis-AuMNs aggregated L. monocytogenes as demonstrated with microscopy techniques, including SEM and optical microscopy. Overall, this work presents a label-free SERS probe method comprised of a surface-modified polyclonal antibody sub-micron magnetic nanoshell structures with high sensitivity and magnetic induced separation that could lead to the fabrication of multiple single-step sensors
Facile fabrication and characterization of kraft lignin@Fe3O4 nanocomposites using pH driven precipitation: Effects on increasing lignin content
This work offers a facile fabrication method for lignin nanocomposites through the assembly of kraft lignin onto magnetic nanoparticles (Fe3O4) based on pH-driven precipitation, without needing organic solvents or lignin functionalization. Kraft lignin@Fe3O4 multicore nanocomposites fabrication proceeded using a simple, pH-driven precipitation technique. An alkaline solution for kraft lignin (pH 12) was rapidly injected into an aqueous-based Fe3O4 nanoparticle colloidal suspension (pH 7) under constant mixing conditions, allowing the fabrication of lignin magnetic nanocomposites. The effects of increasing lignin to initial Fe3O4 mass content (g/g), increasing in ratio from 1:1 to 20:1, are discussed with a complete chemical, structural, and morphological characterization. Results showed that nanocomposites fabricated above 5:1 lignin:Fe3O4 had the highest lignin coverage and content (\u3e20%), possessed superparamagnetic properties (Ms ≈ 45,000 A·m2/kg2); had a negative surface charge (−30 mV), and formed multicore nanostructures (DH ≈ 150 nm). The multicore lignin@Fe3O4 nanocomposites allowed rapid magnetically induced separations from suspension. After 5 min exposure to a rare-earth neodymium magnet (1.27 mm × 1.27 mm × 5.08 mm), lignin@Fe3O4 nanocomposites exhibited a maximum methylene blue removal efficiency of 74.1% ± 7.1%. These nanocomposites have potential in magnetically induced separations to remove organic dyes, heavy metals, or other lignin adsorbates
Adsorptive properties and on-demand magnetic response of lignin@Fe3O4 nanoparticles at castor oil–water interfaces
Lignin@Fe3O4 nanoparticles adsorb at oil–water interfaces, form Pickering emulsions, induce on-demand magnetic responses to break emulsions, and can sequester oil from water. Lignin@Fe3O4 nanoparticles were prepared using a pH-induced precipitation method and were fully characterized. These were used to prepare Pickering emulsions with castor oil/Sudan red G dye and water at various oil/water volume ratios and nanoparticle concentrations. The stability and demulsification of the emulsions under different magnetic fields generated with permanent magnets (0–540 mT) were investigated using microscopy images and by visual inspection over time. The results showed that the Pickering emulsions were more stable at the castor oil/water ratio of 50/50 and above. Increasing the concentration of lignin@Fe3O4 improved the emulsion stability and demulsification rates with 540 mT applied magnetic field strength. The adsorption of lignin@Fe3O4 nanoparticles at the oil/water interface using 1-pentanol evaporation through Marangoni effects was demonstrated, and magnetic manipulation of a lignin@Fe3O4 stabilized castor oil spill in water was shown. Nanoparticle concentration and applied magnetic field strengths were analyzed for the recovery of spilled oil from water; it was observed that increasing the magnetic strength increased oil spill motion for a lignin@Fe3O4 concentration of up to 0.8 mg mL−1 at 540 mT. Overall, this study demonstrates the potential of lignin-magnetite nanocomposites for rapid on-demand magnetic responses to externally induced stimuli
- …