6 research outputs found
ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π·ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ±ΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ
In this study, molecular dynamic simulations of quasi-static compression of silicon carbide
nanorod, were performed. A longitudinal through defect in the form of a cylindrical channel was in-
troduced into the central part of the nanorod. The influence of the cross sectional size of this internal
channel on the strength properties was investigatedΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠΆΠ½Ρ ΠΊΠ°ΡΠ±ΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ 3C-SiC ΠΏΡΠΈ ΠΊΠ²Π°Π·ΠΈΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠΆΠ°ΡΠΈΠΈ. Π ΡΠ΅Π½ΡΡ ΡΡΠ΅ΡΠΆΠ½Ρ Π²Π½ΠΎΡΠΈΠ»ΡΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΡΠ½ΡΠΉ ΡΠΊΠ²ΠΎΠ·Π½ΠΎΠΉ Π΄Π΅ΡΠ΅ΠΊΡ
Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°Π½Π°Π»Π° ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΡΡΠΎΠ³ΠΎ
Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΠΊΠ°Π½Π°Π»Π° Π½Π° ΠΏΡΠΎΡΠ½ΠΎΡΡΠ½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΡΠ΅ΡΠΆΠ½
X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature
Powder diamonds with integrated europium atoms were synthesized at high pressure (7.7 GPa) and temperature (1800 Β°C) from a mixture of pentaerythritol with pyrolyzate of diphthalocyanine (C64H32N16Eu) being a special precursor. In diamonds prepared by X-ray fluorescence spectroscopy, we have found a concentration of Eu atoms of 51 Β± 5 ppm that is by two orders of magnitude greater than that in natural and synthetic diamonds. X-ray diffraction, SEM, X-ray exited optical luminescence, and Raman and IR spectroscopy have confirmed the formation of high-quality diamond monocrystals containing Eu and a substantial amount of nitrogen (~500 ppm). Numerical simulation has allowed us to determine the energy cost of 5.8 eV needed for the incorporation of a single Eu atom with adjacent vacancy into growing diamond crystal (528 carbons)
ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠ° Ρ ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ»Π΅Π½ΠΈΡ ΡΠ΅ΡΠΌΠΎΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΡΠΊΠ°
The work is devoted to the deposition of composite powder materials by cold spray method.
As a spraying material, a thermoplastic compound Β«WAYΒ» for marking the roadway was used. An
asphalt concrete was used as a substrate. As a result of experimental studies, the dependence of the
deposition efficiency on the stagnation temperature of the working air in the ejector nozzle was obtained.
The ANSYS Fluent package was used for evaluative modeling of the cold spraying process. Gas flow
patterns were obtained in the computational domain without particles and taking into account the
interaction of the flow with particles. The trajectory of the particles was calculated for various spraying
parametersΠ Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° Π½Π°Π½Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΠΎΡΠΎΡΠΊΠΎΠ²ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Π°Π·ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ»Π΅Π½ΠΈΡ (Π₯ΠΠ). Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΡΡ ΡΠ΅ΡΠΌΠΎΠΏΠ»Π°ΡΡΠΈΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² Π΄Π»Ρ ΠΌΠ°ΡΠΊΠΈΡΠΎΠ²ΠΊΠΈ Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΡΠ½Π° Π’ΠΠ ΠΠΠΠΠΠ‘Π’ΠΠ Β«WAYΒ». Π
ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΡΠ½ΠΎ Ρ Π°ΡΡΠ°Π»ΡΡΠΎΠ±Π΅ΡΠΎΠ½Π½ΡΠΌ ΠΏΠΎΠΊΡΡΡΠΈΠ΅ΠΌ. Π
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π½Π°ΠΏΡΠ»Π΅Π½ΠΈΡ ΠΎΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΡΠ°Π±ΠΎΡΠ΅Π³ΠΎ Π²ΠΎΠ·Π΄ΡΡ
Π° Π² ΡΠΆΠ΅ΠΊΡΠΎΡΠ½ΠΎΠΌ ΡΠΎΠΏΠ»Π΅. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π₯ΠΠ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΡΡ ΠΏΠ°ΠΊΠ΅Ρ ANSYS Fluent. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠ°ΡΡΠΈΠ½Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³Π°Π·Π° Π² ΡΠ°ΡΡΠ΅ΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π±Π΅Π· ΡΠ°ΡΡΠΈΡ ΠΈ Ρ ΡΡΠ΅ΡΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΠΎΡΠΎΠΊΠ° Ρ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. Π Π°ΡΡΡΠΈΡΠ°Π½Π° ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°Ρ
Π½Π°ΠΏΡΠ»Π΅Π½ΠΈ
Stability and Composition of Helium Hydrates Based on Ices I<sub>h</sub> and II at Low Temperatures
The
recently developed approach describing host lattice relaxation,
guestβguest interactions and the quantum nature of guest behavior
(Belosudov, R. V.; Subbotin, O. S.; Mizuseki, H.; Kawazoe, Y.; Belosludov, V. R. J. Chem. Phys. 2009, 131, 244510) has been used to derive the thermodynamic properties of helium
hydrates based on ices I<sub>h</sub> and II. The<i> p</i>β<i>T</i> phase diagrams of the helium hydrates
in different ices are presented for a wide range of pressures and
temperatures, and the structural transitions between pure ice I<sub>h</sub> and ice II as well as between ice I<sub>h</sub>-based helium
hydrate and ice II-based helium hydrate have been found to be in agreement
with the available experimental data. The βice II-based helium
hydrateβice I<sub>h</sub>-based helium hydrateβ equilibrium
shifts toward the higher pressures in comparison with the line of
βice IIβice I<sub>h</sub>β equilibrium. The degrees
of interstitial space filling by helium in ice I<sub>h</sub>-based
and ice II-based hydrates decrease with increasing temperature and
lowering of pressure. It is demonstrated that the helium filling in
ice I<sub>h</sub> proceeds more slowly than in ice II. However, the
mole fraction of helium in the hydrate based on ice I<sub>h</sub> is
significantly higher than that in the ice II-based hydrate. We predict
that during the phase transition from the ice I<sub>h</sub>-based
hydrate to the ice II-based one a discharge of gaseous helium should
be observed. This may serve as an indicator of the phase transition
in experiment