365 research outputs found

    Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    Full text link
    We report on the results of a \sim40 d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded 103610^{36} erg/s we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1 {\sigma}), making it the 17th^{th} known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law (Γ=0.63\Gamma =0.63) plus a high-temperature black-body (kT \sim 2 keV) component. By analysing \sim12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability while its IR flux varied in phase with the X-ray luminosity, which implies the presence of a disk-like component adding cooler light to the spectral energy distribution of the system.Comment: 11 pages, 11 figures, Accepted for publication in MNRA

    Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices

    Full text link
    Transport properties of the two-dimensional electron gas (2DEG) are considered in the presence of a perpendicular magnetic field BB and of a {\it weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The symmetry of the latter is rectangular or hexagonal. The well-known solution of the corresponding tight-binding equation shows that each Landau level splits into several subbands when a rational number of flux quanta h/eh/e pierces the unit cell and that the corresponding gaps are exponentially small. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies considerably the evaluation of the magnetoresistivity tensor ρμν\rho_{\mu\nu}. The relative phase of the oscillations in ρxx\rho_{xx} and ρyy\rho_{yy} depends on the modulation periods involved. For a 2D modulation with a {\bf short} period 100\leq 100 nm, in addition to the Weiss oscillations the collisional contribution to the conductivity and consequently the tensor ρμν\rho_{\mu\nu} show {\it prominent peaks when one flux quantum h/eh/e passes through an integral number of unit cells} in good agreement with recent experiments. For periods 300400300- 400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved

    Discovery of SXP265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    Full text link
    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the OGLE I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the SAAO 1.9 m telescope, and photometrically, with data obtained using GROND at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of P = (264.516+-0.014) s. The source likely shows a persistent X-ray luminosity of a few 10^35 erg/s and in addition type-I outbursts that indicate an orbital period of ~146 d. A periodicity of 0.867 d, found in the optical light curve, can be explained by non-radial pulsations of the Be star. We identify the optical counterpart and classify it as a B1-2II-IVe star. This confirms SXP 265 as a new Be/X-ray binary pulsar originating in the tidal structure between the Magellanic Clouds.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Valley-dependent tunneling through electrostatically created quantum dots in heterostructures of graphene with hexagonal boron nitride

    Full text link
    Kelvin probe force microscopy (KPFM) has been employed to probe charge carriers in a graphene/hexagonal boron nitride (hBN) heterostructure [Nano Lett, 21, 5013 (2021)]. We propose an approach for operating valley filtering based on the KPFM-induced potential U0U_0 instead of using external or induced pseudo-magnetic fields in strained graphene. Employing a tight-binding model, we investigate the parameters and rules leading to valley filtering in the presence of a graphene quantum dot (GQD) created by the KPFM tip. This model leads to a resolution of different transport channels in reciprocal space, where the electron transmission probability at each Dirac cone (K1K_1= -K and K2K_2 = +K) is evaluated separately. The results show that U0 and the Fermi energy EFE_F control (or invert) the valley polarization, if electrons are allowed to flow through a given valley. The resulting valley filtering is allowed only if the signs of EFE_F and U0U_0 are the same. If they are different, the valley filtering is destroyed and might occur only at some resonant states affected by U0U_0. Additionally, there are independent valley modes characterizing the conductance oscillations near the vicinity of the resonances, whose strength increases with U0U_0 and are similar to those occurring in resonant tunneling in quantum antidots and to the Fabry-Perot oscillations. Using KPFM, to probe the charge carriers, and graphene-based structures to control valley transport, provides an efficient way for attaining valley filtering without involving external or pseudo-magnetic fields as in previous proposals

    Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene

    Full text link
    The properties of Dirac electrons in a magnetic superlattice (SL) on graphene consisting of very high and thin (delta-function) barriers are investigated. We obtain the energy spectrum analytically and study the transmission through a finite number of barriers. The results are contrasted with those for electrons described by the Schrodinger equation. In addition, a collimation of an incident beam of electrons is obtained along the direction perpendicular to that of the SL. We also highlight the analogy with optical media in which the refractive index varies in space.Comment: 21 pages, 13 figures, to appear in New Journal of Physic

    Edge helicons and repulsion of fundamental edge magnetoplasmons in the quantum Hall regime

    Full text link
    A quasi-microscopic treatment of edge magnetoplasmons (EMP) is presented for very low temperatures and confining potentials smooth on the scale of the magnetic length 0\ell_{0} but sufficiently steep at the edges such that Landau level (LL) flattening can be discarded. The profile of the unperturbed electron density is sharp and the dissipation taken into account comes only from electron intra-edge and intra-LL transitions due to scattering by acoustic phonons. For wide channels and filling factors ν=1\nu =1 and 2, there exist independent EMP modes spatially symmetric and antisymmetric with respect to the edge. Some of these modes, named edge helicons, can propagate nearly undamped even when the dissipation is strong. Their density profile changes qualitatively during propagation and is given by a rotation of a complex vector function. For ν>2,\nu >2, the Coulomb coupling between the LLs leads to a repulsion of the uncoupled fundamental LL modes: the new modes have very different group velocities and are nearly undamped. The theory accounts well for the experimentally observed plateau structure of the delay times as well as for the EMP's period and decay rates.Comment: 12 pages, 6 figure

    On the Theory of Magnetotransport in a Periodically Modulated Two-Dimensional Electron Gas

    Full text link
    A semiclassical theory based on the Boltzmann transport equation for a two-dimensional electron gas modulated along one direction with weak electrostatic or magnetic modulations is proposed. It is shown that oscillations of the magnetoresistivity ρ \rho_{||} corresponding to the current driven along the modulation lines observed at moderately low magnetic fields, can be explained as classical geometric resonances reflecting the commensurability of the period of spatial modulations and the cyclotron radius of electrons.Comment: 5 pages, 1 figure, text and 1 figure adde

    Confined magnetic guiding orbit states

    Full text link
    We show how snake-orbit states which run along a magnetic edge can be confined electrically. We consider a two-dimensional electron gas (2DEG) confined into a quantum wire, subjected to a strong perpendicular and steplike magnetic field B/BB/-B. Close to this magnetic step new, spatially confined bound states arise as a result of the lateral confinement and the magnetic field step. The number of states, with energy below the first Landau level, increases as BB becomes stronger or as the wire width becomes larger. These bound states can be understood as an interference between two counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure
    corecore