2 research outputs found

    Statistical Inference of Rate Constants in Chemical and Biochemical Reaction Networks Using an “Inverse” Event-Driven Kinetic Monte Carlo Method

    No full text
    The use of rate models for networks of stochastic reactions is frequently used to comprehend the macroscopically observed dynamic properties of finite size reactive systems as well as their relationship to the underlying molecular events. Τhis particular approach usually stumbles on parameter derivation associated with stochastic kinetics, a quite demanding procedure. The present study incorporates a novel algorithm, which infers kinetic parameters from the system’s time evolution, manifested as changes in molecular species populations. The proposed methodology reconstructs distributions required to infer kinetic parameters of a stochastic process pertaining to either a simulation or experimental data. The suggested approach accurately replicates rate constants of the stochastic reaction networks, which have evolved over time by event-driven Monte Carlo (MC) simulations using the Gillespie algorithm. Furthermore, our approach has been successfully used to estimate rate constants of association and dissociation events between molecular species developing during molecular dynamics (MD) simulations. We certainly believe that our method will be remarkably helpful for considering the macroscopic characteristic molecular roots related to stochastic physical and biological processes

    Switching of Protonation Sites in Hydrated Nicotine via a Grotthuss Mechanism

    No full text
    The switching of the protonation sites in hydrated nicotine, probed by experimental infrared (IR) spectroscopy and theoretical ab initio calculations, is facilitated via a Grotthuss instead of a bimolecular proton transfer (vehicle) mechanism at the experimental temperature (T = 130 K) as unambiguously confirmed by experiments with deuterated water. In contrast, the bimolecular vehicle mechanism is preferred at higher temperatures (T = 300 K) as determined by theory. The Grotthuss mechanism for the concerted proton transfer results in the production of nicotine’s bioactive and addictive pyrrolidine-protonated (Pyrro-H+) protomer with just 5 water molecules. Theoretical analysis suggests that the concerted proton transfer occurs via hydrogen-bonded bridges consisting of a 3 water molecule “core” that connects the pyridine protonated (Pyri-H+) with the pyrrolidine-protonated (Pyrro-H+) protomers. Additional water molecules attached as acceptors to the hydrogen-bonded “core” bridge result in lowering the reaction barrier of the concerted proton transfer down to less than 6 kcal/mol, which is consistent with the experimental observations
    corecore