4,543 research outputs found

    Superspace Formulation of 4D Higher Spin Gauge Theory

    Get PDF
    Interacting AdS_4 higher spin gauge theories with N \geq 1 supersymmetry so far have been formulated as constrained systems of differential forms living in a twistor extension of 4D spacetime. Here we formulate the minimal N=1 theory in superspace, leaving the internal twistor space intact. Remarkably, the superspace constraints have the same form as those defining the theory in ordinary spacetime. This construction generalizes straightforwardly to higher spin gauge theories N>1 supersymmetry.Comment: 24 p

    An Exact Solution of 4D Higher-Spin Gauge Theory

    Get PDF
    We give a one-parameter family of exact solutions to four-dimensional higher-spin gauge theory invariant under a deformed higher-spin extension of SO(3,1) and parameterized by a zero-form invariant. All higher-spin gauge fields vanish, while the metric interpolates between two asymptotically AdS4 regions via a dS3-foliated domainwall and two H3-foliated Robertson-Walker spacetimes -- one in the future and one in the past -- with the scalar field playing the role of foliation parameter. All Weyl tensors vanish, including that of spin two. We furthermore discuss methods for constructing solutions, including deformation of solutions to pure AdS gravity, the gauge-function approach, the perturbative treatment of (pseudo-)singular initial data describing isometric or otherwise projected solutions, and zero-form invariants.Comment: 47 pages. v3: global properties of the solution clarified, minor corrections made, discussion and refs revise

    Gauge Non-Invariant Higher-Spin Currents in 4d4d Minkowski Space

    Full text link
    Conserved currents of any spin t>0t>0 built from symmetric massless gauge fields of any integer spin s≥ts \geq t in {4d} Minkowski space are found. In particular, stress-energy tensor for a higher-spin field of any spin is constructed. Analogously to spin-two stress (pseudo)tensor, currents considered in this paper are not gauge invariant. However, they are shown to generate gauge invariant conserved charges. Besides expected parity even HS currents, we found unexpected parity odd currents that generate less symmetries than the even ones. It is argued that these odd currents unlikely admit a consistent AdSAdS deformation.Comment: 17 pages; V2: Minor corrections, the version published in the volume in honor of Andrei Alekseevich Slavno

    Gauge Non-Invariant Higher-Spin Currents in AdS4AdS_4

    Full text link
    Conserved currents of any spin t>0t>0 built from bosonic symmetric massless gauge fields of arbitrary integer spins in AdS4AdS_4 are found. Analogously to the case of 4d4d Minkowski space, currents considered in this paper are not gauge invariant but generate gauge invariant conserved charges.Comment: 18 pages; V2: Typos and coefficients corrected, published versio

    7D Bosonic Higher Spin Theory: Symmetry Algebra and Linearized Constraints

    Get PDF
    We construct the minimal bosonic higher spin extension of the 7D AdS algebra SO(6,2), which we call hs(8*). The generators, which have spin s=1,3,5,..., are realized as monomials in Grassmann even spinor oscillators. Irreducibility, in the form of tracelessness, is achieved by modding out an infinite dimensional ideal containing the traces. In this a key role is played by the tree bilinear traces which form an SU(2)_K algebra. We show that gauging of hs(8*) yields a spectrum of physical fields with spin s=0,2,4,...which make up a UIR of hs(8*) isomorphic to the symmetric tensor product of two 6D scalar doubletons. The scalar doubleton is the unique SU(2)_K invariant 6D doubleton. The spin s\geq 2 sector comes from an hs(8*)-valued one-form which also contains the auxiliary gauge fields required for writing the curvature constraints in covariant form. The physical spin s=0 field arises in a separate zero-form in a `quasi-adjoint' representation of hs(8*). This zero-form also contains the spin s\geq 2 Weyl tensors, i.e. the curvatures which are non-vanishing on-shell. We suggest that the hs(8*) gauge theory describes the minimal bosonic, massless truncation of M theory on AdS_7\times S^4 in an unbroken phase where the holographic dual is given by N free (2,0) tensor multiplets for large N.Comment: 23 pages, late

    Deformed Oscillator Algebras and Higher-Spin Gauge Interactions of Matter Fields in 2+1 Dimensions

    Full text link
    We formulate a non-linear system of equations which describe higher-spin gauge interactions of massive matter fields in 2+1 dimensional space-time and explain some properties of the deformed oscillator algebra which underlies this formulation. In particular we show that the parameter of mass MM of matter fields is related to the deformation parameter in this algebra.Comment: LaTex, 12 pages, no figures; Invited talk at the International Seminar Supersymmetry and Quantum Field Theory dedicated to the memory of Dmitrij V. Volkov; Kharkov, January 1997; to appear in the proceeding

    Holography of the N=1 Higher-Spin Theory on AdS4

    Full text link
    We argue that the N=1 higher-spin theory on AdS4 is holographically dual to the N=1 supersymmetric critical O(N) vector model in three dimensions. This appears to be a special form of the AdS/CFT correspondence in which both regular and irregular bulk modes have similar roles and their interplay leads simultaneously to both the free and the interacting phases of the boundary theory. We study various boundary conditions that correspond to boundary deformations connecting, for large-N, the free and interacting boundary theories. We point out the importance of parity in this holography and elucidate the Higgs mechanism responsible for the breaking of higher-spin symmetry for subleading N.Comment: 19 page

    Geometry and dynamics of higher-spin frame fields

    Full text link
    We give a systematic account of unconstrained free bosonic higher-spin fields on D-dimensional Minkowski and (Anti-)de Sitter spaces in the frame formalism. The generalized spin connections are determined by solving a chain of torsion-like constraints. Via a generalization of the vielbein postulate these allow to determine higher-spin Christoffel symbols, whose relation to the de Wit--Freedman connections is discussed. We prove that the generalized Einstein equations, despite being of higher-derivative order, give rise to the AdS Fronsdal equations in the compensator formulation. To this end we derive Damour-Deser identities for arbitrary spin on AdS. Finally we discuss the possibility of a geometrical and local action principle, which is manifestly invariant under unconstrained higher-spin symmetries.Comment: 30 pages, uses youngtab.sty, v2: minor changes, references adde
    • …
    corecore