47 research outputs found

    Design and modeling of a novel damage-free steel column base

    Get PDF
    Column bases are fundamental components of a steel frame. However their design has not yet received appropriate attention. Conventional steel column bases cannot be easily repaired if damaged and exhibit difficult-to-predict and simulate stiffness, strength and hysteretic behaviour. This paper proposes a novel demountable and fully repairable column base for resilient steel buildings. The new column base isolates damage in easy-to-replace structural elements with the goal of minimizing repair time and disruption of the building service in the aftermath of a strong earthquake. Moreover, it can be easily constructed and deconstructed to enable sustainable steel frame designs. It provides significant flexibility in the design, with rotational stiffness and moment resistance that can be independently tuned. It has self-centering capability for reducing residual drifts. The paper presents design rules, an analytical hysteretic model and a 3D finite element model for the new column base

    Self-centering steel column base with metallic energy dissipation devices

    Get PDF
    Column bases of seismic-resistant steel frames are typically designed as full-strength to ensure that plastic hinges develop in the bottom end of the first-storey columns. Alternatively, column bases may be designed as partial-strength and dissipate energy through inelastic deformations in their main components (i.e., base plate, steel anchor rods). Both design philosophies result in difficult-to-repair damage and residual drifts. Moreover, the second design philosophy results in complex hysteretic behaviour with strength and stiffness deterioration. This paper proposes a partial-strength low-damage self-centering steel column base. The column base provides flexibility in the design as its rotational stiffness and moment resistance can be independently tuned. The paper presents an analytical model that predicts the stiffness, strength, and hysteretic behaviour of the column base. In addition, a design procedure and detailed finite element models are presented. The paper evaluates the effectiveness of the column base by carrying out nonlinear dynamic analyses on a prototype steel building designed as post-tensioned self-centering moment-resisting frame. The results demonstrate the potential of the column base to reduce the residual first-storey drifts and protect the first-storey columns from yielding.</p

    Left Atrial Reservoir Function and Outcomes in Secondary Mitral Regurgitation

    Get PDF
    BackgroundLeft atrial (LA) size is a marker of disease severity and is related to worse outcomes in secondary mitral regurgitation (MR). The prognostic value of LA function assessed by LA reservoir strain (LARS), however, remains unknown. The aim of this study was to investigate the prognostic implications of LARS in patients with significant secondary MR.MethodsLARS was evaluated using speckle-tracking echocardiography in patients with more than mild (grade ≥ 2) secondary MR. The population was divided into two groups according to the median LARS value (9.8%). The primary end point was all-cause mortality.ResultsA total of 666 patients (mean age, 66 ± 11 years; 68% men) were included. On multivariable analysis, more severe MR was independently associated with more impaired LARS (LARS P = .001). During a median follow-up period of 5 years (interquartile range, 2-10), 383 patients (58%) died. Patients with LARS P P ConclusionsLARS is independently associated with all-cause mortality in patients with significant secondary MR and has incremental prognostic value over LA volume and left ventricular global longitudinal strain. LARS may improve risk stratification of patients with secondary MR.</p

    Atherosclerotic plaque characteristics on quantitative coronary computed tomography angiography associated with ischemia on positron emission tomography in diabetic patients

    Get PDF
    Patients with diabetes mellitus (DM) may show diffuse coronary artery atherosclerosis on coronary computed tomography angiography (CTA). The present study aimed at quantification of atherosclerotic plaque with CTA and its association with myocardial ischemia on positron emission tomography (PET) in DM patients. Of 922 symptomatic outpatients without previously known coronary artery disease who underwent CTA, 115 with DM (mean age 65 ± 8 years, 58% male) who had coronary atherosclerosis and underwent both quantified CTA (QCTA) and PET were included in the study. QCTA analysis was performed on a per-vessel basis and the most stenotic lesion of each vessel was considered. Myocardial ischemia on PET was based on absolute myocardial blood flow at stress ≤ 2.4 ml/g/min. Of the 345 vessels included in the analysis, 135 (39%) had flow-limiting stenosis and were characterized by having longer lesions, higher plaque volume, more extensive plaque burden and higher percentage of dense calcium (37 ± 22% vs 28 ± 22%, p = 0.001). On univariable analysis, QCTA parameters indicating the degree of stenosis, the plaque extent and composition were associated with presence of ischemia. The addition of the QCTA degree of stenosis parameters (x2 36.45 vs 88.18, p < 0.001) and the QCTA plaque extent parameters (x2 88.18 vs 97.44, p = 0.01) to a baseline model increased the association with ischemia. In DM patients, QCTA variables of vessel stenosis, plaque extent and composition are associated with ischemia on PET and characterize the hemodynamic significant atherosclerotic lesion.</p

    Coronary computed tomography angiography-based endothelial wall shear stress in normal coronary arteries

    Get PDF
    Endothelial wall shear stress (ESS) is a biomechanical force which plays a role in the formation and evolution of atherosclerotic lesions. The purpose of this study is to evaluate coronary computed tomography angiography (CCTA)-based ESS in coronary arteries without atherosclerosis, and to assess factors affecting ESS values. CCTA images from patients with suspected coronary artery disease were analyzed to identify coronary arteries without atherosclerosis. Minimal and maximal ESS values were calculated for 3-mm segments. Factors potentially affecting ESS values were examined, including sex, lumen diameter and distance from the ostium. Segments were categorized according to lumen diameter tertiles into small (= 3.2 mm) segments. A total of 349 normal vessels from 168 patients (mean age 59 +/- 9 years, 39% men) were included. ESS was highest in the left anterior descending artery compared to the left circumflex artery and right coronary artery (minimal ESS 2.3 Pa vs. 1.9 Pa vs. 1.6 Pa, p < 0.001 and maximal ESS 3.7 Pa vs. 3.0 Pa vs. 2.5 Pa, p < 0.001). Men had lower ESS values than women, also after adjusting for lumen diameter (p < 0.001). ESS values were highest in small segments compared to intermediate or large segments (minimal ESS 3.8 Pa vs. 1.7 Pa vs. 1.2 Pa, p < 0.001 and maximal ESS 6.0 Pa vs. 2.6 Pa vs. 2.0 Pa, p < 0.001). A weak to strong correlation was found between ESS and distance from the ostium (rho = 0.22-0.62, p < 0.001). CCTA-based ESS values increase rapidly and become widely scattered with decreasing lumen diameter. This needs to be taken into account when assessing the added value of ESS beyond lumen diameter in highly stenotic lesions
    corecore