5 research outputs found

    Active Cellulose-Based Food Packaging and Its Use on Foodstuff

    Get PDF
    The essential role of active packaging is food quality improvement, which results in an extension of shelf life. Active packaging can also further enhance distribution from the origin point, and contributes to food waste reduction, offering greater sustainability. In this study, we introduced a new method for obtaining cellulose-based active packages, combining gamma irradiation as an eco-friendly activation process, and clove essential oil and cold-pressed rosehip seed oil as bioactive agents. Newly obtained bioactive materials were evaluated to assess their structural, hydrophobic, and morphological properties, thermal stability, and antioxidant and antimicrobial properties. The results showed that the plant oils induced their antimicrobial effects on paper, using both in vitro tests, against several bacterial strains (Gram-positive bacteria Listeria monocytogenes and Gram-negative bacteria Salmonella enteritidis and Escherichia coli), and in vivo tests, on fresh cheese curd and beef. Moreover, these oils can help control foodborne pathogens, which leads to extended shelf life

    Evaluation of Natural and Modified Castor Oil Incorporation on the Melt Processing and Physico-Chemical Properties of Polylactic Acid

    No full text
    Bio-based plasticizers derived from renewable resources represent a sustainable replacement for petrochemical-based plasticizers. Vegetable oils are widely available, non-toxic and biodegradable, resistant to evaporation, mostly colorless and stable to light and heat, and are a suitable alternative for phthalate plasticizers. Plasticized poly(lactic acid) (PLA) materials containing 5 wt%, 10 wt%, 15 wt% and 20 wt% natural castor oil (R) were prepared by melt blending to improve the ductility of PLA. Three castor oil adducts with maleic anhydride (MA), methyl nadic anhydride (methyl-5-norbornene-2,3-dicarboxylic anhydride) (NA) and hexahydro-4-methylphthalic anhydride (HA), previously synthesized, were incorporated in a concentration of 15 wt% each in PLA and compared with PLA plasticized with natural R. The physico-chemical properties of PLA/R blends were investigated by means of processability, chemical structure, surface wettability, mechanical, rheological and thermal characteristics. The addition of natural and modified R significantly improved the melt processing by decreasing the melt viscosity by ~95%, increased the surface hydrophobicity, enhanced the flexibility by ~14 times in the case of PLA/20R blend and ~11 times in the case of PLA/15R-MA blend as compared with neat PLA. The TG/DTG results showed that the natural R used up to 20 wt% could significantly improve the thermal stability of PLA, similar to the maleic anhydride-modified R. Based on the obtained results, up to 20 wt% natural R and 15 wt% MA-, HA- or NA-modified R might be used as environmentally friendly plasticizers that can improve the overall properties of PLA, depending on the intended food packaging applications

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive ΄(1S) and ΄(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the ΄(1S) and ΄(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of ΄(1S). A suppression of the inclusive ΄(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects

    Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at √s = 2.76 TeV

    No full text
    The pT-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at s√=2.76 TeV in the transverse momentum range 0.5 < pT < 12 GeV/c with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties

    Beauty production in pp collisions at √s = 2.76 TeV measured via semi-electronic decays

    No full text
    The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s√= 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, σb→e=3.47±0.40(stat)+1.12−1.33(sys)±0.07(norm)ÎŒb, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total bbÂŻ production cross section, σbbÂŻ=130±15.1(stat)+42.1−49.8(sys)+3.4−3.1(extr)±2.5(norm)±4.4(BR)ÎŒb
    corecore