5 research outputs found

    Long-Term Oxidation of Zirconium Alloy in Simulated Nuclear Reactor Primary Coolant—Experiments and Modeling

    No full text
    Oxidation of Zr-1%Nb fuel cladding alloy in simulated primary coolant of a pressurized water nuclear reactor is followed by in-situ electrochemical impedance spectroscopy. In-depth composition and thickness of the oxide are estimated by ex-situ analytical techniques. A kinetic model of the oxidation process featuring interfacial reactions of metal oxidation and water reduction, as well as electron and ion transport through the oxide governed by diffusion-migration, is parameterized by quantitative comparison to impedance data. The effects of compressive stress on diffusion and ionic space charge on migration of ionic point defects are introduced to rationalize the dependence of transport parameters on thickness (or oxidation time). The influence of ex-situ and in-situ hydrogen charging on kinetic and transport parameters is also studied

    Deposition of Colloidal Magnetite on Stainless Steel in Simulated Steam Generator Conditions—Experiments and Modeling

    No full text
    Sludge formation via colloidal magnetite deposition in steam generators is an important phenomenon that significantly influences the thermohydraulic properties and corrosion of structural materials. This paper aims to verify a model of sludge deposition and consolidation with emphasis on its most significant parameters and their experimental estimation. In-situ electrochemical impedance spectroscopic (EIS) measurements are employed for quantitative evaluation of magnetite deposition kinetics on stainless steel in ammonia-ethanolamine (AMETA) secondary coolant at different temperatures. Parameterization of the model by quantitative comparison of the mixed-conduction model (MCM) with experimental data is discussed. Model predictions are compared with literature data from laboratory experiments and plant operation. Conclusions are drawn about the applicability of the model for quantitative assessment of sludge deposition and consolidation rates

    Corrosion of Stainless Steel in Simulated Nuclear Reactor Primary Coolant—Experiments and Modeling

    No full text
    In the present paper, the effect of the evolution of primary water chemistry during power operation on the corrosion rate and conduction mechanism of oxide films on stainless steel is studied by in situ impedance spectroscopy at 300 °C/9 MPa during 1-week exposure periods in an autoclave connected to a recirculation loop. At the end of the exposure period, the samples were anodically polarized in a wide range of potentials to evaluate the stability of the passive oxide. Separate samples of the same steel were simultaneously exposed to the coolant and subsequently analyzed by glow discharge optical emission spectroscopy (GDOES) in order to estimate the thickness and the in-depth composition of the formed oxides. Impedance data were quantitatively interpreted using the mixed-conduction model for oxide films (MCM) to estimate the rates of metal oxidation at the alloy/oxide interface, oxide dissolution and restructuring at the film/coolant interface, and ion transport in the protective corrosion layer
    corecore