11 research outputs found

    Theoretical study of the optical conductivity of αNaV2O5\alpha'-NaV_2O_5

    Full text link
    Using finite temperature diagonalization techniques it is shown that the quarter-filled t-J-V model on a trellis lattice structure provides a quantitative explanation of the highly anisotropic optical conductivity of the αNaV2O5\alpha'-NaV_{2}O_{5} compound. The combined effects of the short-range Coulomb interaction and valence fluctuations of V-ions determine the main absorption and the fundamental gap. Inter-ladder hopping is necessary for the explanation of the anomalous in-gap absorption and generation of spectral weight at high energy. The role of valence fluctuations is explained in terms of the domain wall excitations of an anisotropic 2D Ising model in a transverse field close to criticality.Comment: 4 pages, 5 figure

    Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    Get PDF
    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.Unilever (Firm)National Cancer Institute (U.S.) (R01-CA055042 (now R01-ES022872))Massachusetts Institute of Technology. Center for Environmental Health Sciences (Grant NIEHS P30-ES002109

    Bibliography

    No full text
    corecore