21 research outputs found

    Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State

    Full text link
    We present the general theory of clean, two-dimensional, quantum Heisenberg antiferromagnets which are close to the zero-temperature quantum transition between ground states with and without long-range N\'{e}el order. For N\'{e}el-ordered states, `nearly-critical' means that the ground state spin-stiffness, ρs\rho_s, satisfies ρsJ\rho_s \ll J, where JJ is the nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered ground states have a energy-gap, Δ\Delta, towards excitations with spin-1, which satisfies ΔJ\Delta \ll J. Under these circumstances, we show that the wavevector/frequency-dependent uniform and staggered spin susceptibilities, and the specific heat, are completely universal functions of just three thermodynamic parameters. Explicit results for the universal scaling functions are obtained by a 1/N1/N expansion on the O(N)O(N) quantum non-linear sigma model, and by Monte Carlo simulations. These calculations lead to a variety of testable predictions for neutron scattering, NMR, and magnetization measurements. Our results are in good agreement with a number of numerical simulations and experiments on undoped and lightly-doped La2δSrδCuO4La_{2-\delta} Sr_{\delta}Cu O_4.Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx

    Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses

    Full text link

    Tamm plasmon polaritons: Slow and spatially compact light

    Get PDF
    We report on the first experimental observation of Tamm plasmon polaritons (TPPs) formed at the interface between a metal and a dielectric Bragg reflector (DBR). In contrast to conventional surface plasmons, TPPs have an in-plane wavevector less than the wavevector of light in vacuum, which allows for their direct optical excitation. The angular resolved reflectivity and transmission spectra of a GaAs/AlAs DBR covered by Au films of various thicknesses show the resonances associated with the TPP at low temperatures and room temperature. The in-plane dispersion of TTPs is parabolic with an effective mass of 4×10−5 of the free electron mass
    corecore