74 research outputs found

    Optical control of one and two hole spins in interacting quantum dots

    Full text link
    A single hole spin in a semiconductor quantum dot has emerged as a quantum bit that is potentially superior to an electron spin. A key feature of holes is that they have a greatly reduced hyperfine interaction with nuclear spins, which is one of the biggest difficulties in working with an electron spin. It is now essential to show that holes are viable for quantum information processing by demonstrating fast quantum gates and scalability. To this end we have developed InAs/GaAs quantum dots coupled through coherent tunneling and charged with controlled numbers of holes. We report fast, single qubit gates using a sequence of short laser pulses. We then take the important next step toward scalability of quantum information by optically controlling two interacting hole spins in separate dots.Comment: 5 figure

    Using co-authorship networks to map and analyse global Neglected Tropical Disease research with an affiliation to Germany

    Get PDF
    Neglected tropical disease research has changed considerably in recent decades, and the German government is committed to addressing its past neglect of NTD research. Our aim was to use an innovative social network analysis of bibliometric data to map neglected tropical disease research networks that are inside of and affiliated with Germany, thereby enabling data-driven health policy decision-making. We created and analysed co-author networks from publications in the SCOPUS database, with a focus on five diseases. We found that Germany's share of global publication output for NTDs is approximately half that of other medical research fields. Furthermore, we identified institutions with prominent NTD research within Germany and strong research collaborations between German institutions and partners abroad, mostly in other high-income countries. This allowed an assessment of strong collaborations for further development, e.g., for research capacity strengthening in low-income-countries, but also for identifying missed opportunities for collaboration within the network. Through co-authorship network analysis of individual researcher networks, we identified strong performers by using classic bibliometric parameters, and we identified academic talent by social network analysis parameters on an individual level

    The great screen anomaly—a new frontier in product discovery through functional metagenomics

    Get PDF
    Functional metagenomics, the study of the collective genome of a microbial community by expressing it in a foreign host, is an emerging field in biotechnology. Over the past years, the possibility of novel product discovery through metagenomics has developed rapidly. Thus, metagenomics has been heralded as a promising mining strategy of resources for the biotechnological and pharmaceutical industry. However, in spite of innovative work in the field of functional genomics in recent years, yields from function-based metagenomics studies still fall short of producing significant amounts of new products that are valuable for biotechnological processes. Thus, a new set of strategies is required with respect to fostering gene expression in comparison to the traditional work. These new strategies should address a major issue, that is, how to successfully express a set of unknown genes of unknown origin in a foreign host in high throughput. This article is an opinionating review of functional metagenomic screening of natural microbial communities, with a focus on the optimization of new product discovery. It first summarizes current major bottlenecks in functional metagenomics and then provides an overview of the general metagenomic assessment strategies, with a focus on the challenges that are met in the screening for, and selection of, target genes in metagenomic libraries. To identify possible screening limitations, strategies to achieve optimal gene expression are reviewed, examining the molecular events all the way from the transcription level through to the secretion of the target gene product
    • …
    corecore