162 research outputs found

    Prohormone convertase 2 activity is increased in the hippocampus of WFS1 knockout mice

    Get PDF
    Background: Mutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy, and deafness. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala, and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout (KO) on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 KO mice. Results: We identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P < 0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage) of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2). Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 KO mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9 ± 2.3%, p < 0.0001, n = 8) than in wild-type mice (100.0 ± 7.0%, n = 8). However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels. Conclusion: Processing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 KO mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation

    Role of CCK in anti-exploratory action of paroxetine, 5-HT reuptake inhibitor

    Get PDF
    The administration of paroxetine (0.5–8 mg/kg), a selective 5-HT reuptake inhibitor, induced a dose-dependent reduction of exploratory activity of rats in the motility test. In the elevated plus-maze paroxetine was less effective, only 8 mg/kg of paroxetine decreased the exploratory behaviour of rats. The doses of paroxetine (2–8 mg/kg) reducing the exploratory activity in the motility test increased the density of CCK receptors in the frontal cortex, but not in the hippocampus. The treatment of rats with the CCKB receptor antagonist LY288,513 (0.01–1 mg/kg) did not change the exploratory activity. However, the reduction of exploratory activity induced by the low dose of paroxetine (2 mg/kg), but not by the higher dose (8 mg/kg), was dose-dependently reversed by the administration of LY288,513. Moreover, LY288,513 did not affect the anti-exploratory action of paroxetine (8 mg/kg) in the elevated plus-maze. Diazepam at doses (0.5–1.0 mg/kg) not suppressing the locomotor activity did not change the anti-exploratory action of paroxetine in the motility test. It is likely that the anti-exploratory action of a low dose of paroxetine (2 mg/kg) is not related to the increase in anxiety, but rather to the reduction of exploratory drive. Evidence exists that this effect of paroxetine is mediated via the activation of CCK-ergic transmission

    Analysis of SNP profiles in patients with major depressive disorder

    Get PDF
    The present study focused on 91 single-nucleotide polymorphisms (SNPs) in 21 candidate genes to find associations with major depressive disorder (MDD). In total, 160 healthy controls and 177 patients with MDD were studied. We applied arrayed primer extension (APEX) based genotyping technology followed by association and haplotype analysis. SNPs in CCKAR, DRD1, DRD2, and HTR2C genes showed nominally significant associations with MDD. None of these associations remained significant after adjustment for multiple testing. Haplotype analysis revealed CCKAR haplotypes to be associated with MDD (global p=0.004). More precisely, we found the GAGT haplotype to be associated with increased risk for MDD (OR 7.42, 95% CI 2.13–25.85, p=0.002). This haplotype effect remained significant after Bonferroni correction (p=0.04 after Bonferroni's adjustment). Altogether we were able to find some nominal associations, but due to small sample size these results should be taken as exploratory. However, the effect of GAGT haplotype on the CCKAR gene may be considered as increasing the risk for MDD

    Gene expression analysis of the corticotrophin-releasing Hormone-proopiomelanocortin system in psoriasis skin biopsies

    Get PDF
    The corticotrophin-releasing hormone-proopiomelano-cortin (CRH-POMC) system in the skin coordinates pigmentation and the immune response. The aim of this study was to evaluate the regulatory role of the neuroendocrine system in the pathogenesis of psoriasis. Using quantitative real-time-PCR, mRNA expression levels of 15 genes related to the CRH-POMC system were measured in punch biopsies from lesional and non-lesional skin of patients with psoriasis and from skin of healthy control subjects. Statistically significant up-regulation of POMC, CRH receptor type 1, melanin-concentrating hormone receptor (MCHR1) and melanocortin receptors 2, 3 and 4 mRNA expression in lesional and in non-lesional skin compared with healthy control samples were established. Tyrosinase (TYR), T(Y)RP-1 and ASIP genes were statistically significantly down-regulated in lesional and non-lesional skin of psoriasis samples compared with healthy subjects. The up-regulation of POMC, melanocortin receptors, CRH receptor type 1 and MCHR1 in the lesional and non-lesional skin of psoriasis patients supports the importance of the local CRH-POMC system in the pathogenesis of psoriasis

    The Combined Impact Of IgLON Family Proteins Lsamp And Neurotrimin On Developing Neurons And Behavioral Profiles In Mouse

    Get PDF
    Cell surface neural adhesion proteins are critical components in the complex orchestration of cell proliferation, apoptosis, and neuritogenesis essential for proper brain construction and behavior. We focused on the impact of two plasticity-associated IgLON family neural adhesion molecules, Neurotrimin (Ntm) and Limbic system associated membrane protein (Lsamp), on mouse behavior and its underlying neural development. Phenotyping neurons derived from the hippocampi of Lsamp−/−, Ntm−/− and Lsamp−/−Ntm−/− mice was performed in parallel with behavioral testing. While the anatomy of mutant brains revealed no gross changes, the Ntm−/− hippocampal neurons exhibited premature sprouting of neurites and manifested accelerated neurite elongation and branching. We propose that Ntm exerts an inhibitory impact on neurite outgrowth, whereas Lsamp appears to be an enhancer of the said process as premature neuritogenesis in Ntm−/− neurons is apparent only in the presence of Lsamp. We also show interplay between Lsamp and Ntm in regulating tissue homeostasis: the impact of Ntm on cellular proliferation was dependent on Lsamp, and Lsamp appeared to be a positive regulator of apoptosis in the presence of Ntm. Behavioral phenotyping indicated test-specific interactions between Lsamp and Ntm. The phenotypes of single mutant lines, such as reduced swimming speed in Morris water maze and increased activity in the elevated plus maze, were magnified in Lsamp−/−Ntm−/− mice. Altogether, evidence both from behavioral experiments and cultured hippocampal cells show combined and differential interactions between Ntm and Lsamp in the formation of hippocampal circuits and behavioral profiles. We demonstrate that mutual interactions between IgLON molecules regulate the initiation of neurite sprouting at very early ages, and even cell-autonomously, independent of their regulation of cell-cell adhesion

    The PRO2268 Gene as a Novel Susceptibility Locus for Vitiligo

    Get PDF
    Letter to the edito

    Polymorphisms in Toll-like receptor genes are associated with vitiligo

    Get PDF
    Background: The members of Toll-like receptor (TLR) family are responsible for recognizing various molecular patterns associated with pathogens. Their expression is not confined to immune cells and have been detected in skin cells such as keratinocytes and melanocytes. As part of a generated response to pathogens, TLRs are involved in inducing inflammatory mediators to combat these threats. It is therefore not surprising that TLRs have been implicated in inflammatory skin diseases, including atopic dermatitis and psoriasis. Likewise, as key players in autoimmunity, they have been associated with a number of autoimmune diseases. Based on this, the role of TLRs in vitiligo could be suspected, but is yet to be clearly established. Methods: In order to conduct a genetic association analysis, 30 SNPs were selected from TLR1-TLR8 and TLR10 regions to be genotyped in Estonian case-control cohort consisting of 139 vitiligo patients and 307 healthy control individuals. The patients were further analyzed in subgroups based on sex, age of onset, occurrence of vitiligo among relatives, extent of depigmented areas, vitiligo progression activity, appearance of Köbner's phenomenon, existence of halo naevi, and incidence of spontaneous repigmentation. Results: The most notable finding came with SNP rs179020 situated in TLR7 gene, that was associated in entire vitiligo (Padj = 0.0065) and also several subgroup analyses. Other single marker and haplotype analyses pointed to TLR3, TLR4, and TLR10 genes. Conclusions: This study investigated the genetic regions of nine TLR genes in relation to vitiligo susceptibility. The main results were the associations of TLR7 SNPs with vitiligo, while several other associations were obtained from the remaining TLR gene regions. This suggests that in addition to other inflammatory skin diseases, TLRs affect the development of vitiligo, thus making them interesting targets for future research

    Interpretation of knockout experiments: the congenic footprint

    Get PDF
    In gene targeting experiments, the importance of genetic background is now widely appreciated, and knockout alleles are routinely backcrossed onto a standard inbred background. This produces a congenic strain with a substantial segment of embryonic stem (ES)-cell-derived chromosome still flanking the knockout allele, a phenomenon often neglected in knockout studies. In cholecystokynin 2 (Cckbr) knockout mice backcrossed with C57BL/6, we have found a clear ‘congenic footprint’ of expression differences in at least 10 genes across 40 Mb sequence flanking the Cckbr locus, each of which is potentially responsible for aspects of the ‘knockout’ phenotype. The expression differences are overwhelmingly in the knockout-low direction, which may point to a general phenomenon of background dependence. This finding emphasizes the need for caution in using gene knockouts to attribute phenotypic effects to genes. This is especially the case when the gene is of unknown function or the phenotype is unexpected, and is a particular concern for large-scale knockout and phenotypic screening programmes. However, the impact of genetic background should not be simply viewed as a potential confound, but as a unique opportunity to study the broader responses of a system to a specific (genetic) perturbation
    • …
    corecore