18 research outputs found

    No-core shell model for 48-Ca, 48-Sc and 48-Ti

    Full text link
    We report the first no-core shell model results for 48Ca^{48}Ca, 48Sc^{48}Sc and 48Ti^{48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited ℏΩ\hbar\Omega range around 45/A1/3−25/A2/3=10.5MeV45/A^{1/3}-25/A^{2/3} = 10.5 MeV and a limited model space up to 1ℏΩ1\hbar\Omega. No single-particle energies are used. We find that the charge dependence of the bulk binding energy of eight A=48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, the resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. We then introduce additive isospin-dependent central terms plus a tensor force to our Hamiltonian and achieve accurate binding energies and reasonable spectra for all three nuclei. The resulting no-core shell model opens a path for applications to the double-beta (ÎČÎČ\beta\beta) decay process.Comment: Revised content and added reference

    Auxiliary potential in no-core shell-model calculations

    Full text link
    The Lee-Suzuki iteration method is used to include the folded diagrams in the calculation of the two-body effective interaction veff(2)v^{(2)}_{\rm eff} between two nucleons in a no-core model space. This effective interaction still depends upon the choice of single-particle basis utilized in the shell-model calculation. Using a harmonic-oscillator single-particle basis and the Reid-soft-core {\it NN} potential, we find that veff(2)v^{(2)}_{\rm eff} overbinds ^4\mbox{He} in 0, 2, and 4ℏΩ4\hbar\Omega model spaces. As the size of the model space increases, the amount of overbinding decreases significantly. This problem of overbinding in small model spaces is due to neglecting effective three- and four-body forces. Contributions of effective many-body forces are suppressed by using the Brueckner-Hartree-Fock single-particle Hamiltonian.Comment: 14 text pages and 4 figures (in postscript, available upon request). AZ-PH-TH/94-2

    Large-basis shell model studies of light nuclei with a multi-valued G-matrix effective interaction

    Get PDF
    Large-basis shell model studies of low-lying excitations in light nuclei from 4He to 7Li have been performed with a multi-valued G-matrix effective interaction, as recently suggested by Haxton et al.. Calculations were performed relative to the vacuum (``no core") using very large, separable model spaces containing all excitations with unperturbed energies up to 8\hbar\Omega. Using G matrices derived from a new Nijmegen potential, we achieve a very satisfactory description of these excitations

    Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li

    Full text link
    We apply the Lee-Suzuki iteration method to calculate the linked-folded diagram series for a new Nijmegen local NN potential. We obtain an exact starting-energy-independent effective two-body interaction for a multi-shell, no-core, harmonic-oscillator model space. It is found that the resulting effective-interaction matrix elements can be well approximated by the Brueckner G-matrix elements evaluated at starting energies selected in a simple way. These starting energies are closely related to the energies of the initial two-particle states in the ladder diagrams. The ``exact'' and approximate effective interactions are used to calculate the energy spectrum of 6Li in order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request). University of Arizona preprint, Number unassigne

    QCD near the Light Cone

    Get PDF
    Starting from the QCD Lagrangian, we present the QCD Hamiltonian for near light cone coordinates. We study the dynamics of the gluonic zero modes of this Hamiltonian. The strong coupling solutions serve as a basis for the complete problem. We discuss the importance of zero modes for the confinement mechanism.Comment: 32 pages, ReVTeX, 2 Encapsulated PostScript figure

    Properties of 12^{12}C in the {\it ab initio} nuclear shell-model

    Get PDF
    We obtain properties of 12^{12}C in the {\it ab initio} no-core nuclear shell-model. The effective Hamiltonians are derived microscopically from the realistic CD-Bonn and the Argonne V8' nucleon-nucleon (NN) potentials as a function of the finite harmonic oscillator basis space. Binding energies, excitation spectra and electromagnetic properties are presented for model spaces up to 5ℏΩ5\hbar\Omega. The favorable comparison with available data is a consequence of the underlying NN interaction rather than a phenomenological fit.Comment: 9 pages, 2 figure

    Series Expansions for the Massive Schwinger Model in Hamiltonian lattice theory

    Get PDF
    It is shown that detailed and accurate information about the mass spectrum of the massive Schwinger model can be obtained using the technique of strong-coupling series expansions. Extended strong-coupling series for the energy eigenvalues are calculated, and extrapolated to the continuum limit by means of integrated differential approximants, which are matched onto a weak-coupling expansion. The numerical estimates are compared with exact results, and with finite-lattice results calculated for an equivalent lattice spin model with long-range interactions. Both the heavy fermion and the light fermion limits of the model are explored in some detail.Comment: RevTeX, 10 figures, add one more referenc

    Large-space shell-model calculations for light nuclei

    Full text link
    An effective two-body interaction is constructed from a new Reid-like NNNN potential for a large no-core space consisting of six major shells and is used to generate the shell-model properties for light nuclei from AA=2 to 6. (For practical reasons, the model space is partially truncated for AA=6.) Binding energies and other physical observables are calculated and compare favorably with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure
    corecore