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Large-basis shell model studies of low-lying excitations in
light nuclei from 4He to 7Li have been performed with a multi-
valued G-matrix effective interaction, as recently suggested
by Haxton et al.. Calculations were performed relative to
the vacuum (“no core”) using very large, separable model
spaces containing all excitations with unperturbed energies
up to 8h̄Ω. Using G matrices derived from a new Nijmegen
potential, we achieve a very satisfactory description of these
excitations.
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I. INTRODUCTION

The nuclear Hamiltonian

H =
1

2

A∑
i 6=j

(Tij + Vij) , (1)

where Tij is the relative kinetic energy operator and Vij
the nucleon-nucleon (NN) interaction, is often treated
in the nuclear shell model by introducing the one-body
harmonic oscillator (HO) Hamiltonian

H0 =
A∑
i=1

hi =
A∑
i=1

(
p2
i

2M
+

1

2
MΩ2r2

i

)
(2)

to classify the many-body states: Slater determinants are
formed from the products of these single-particle wave
functions. These many-body basis states can be labeled
according to the number of oscillator quanta they con-

tain, Nsum =
∑A
i=1Ni, or, equivalently, the unperturbed

energies

A∑
i=1

(
Ni +

3

2

)
h̄Ω, (3)

where Ni is the number of oscillator quanta (2ni + li) of
the ith single-particle state. Conventionally the labeling
is relative to the minimum energy Slater determinant(s),

so that the basis states are partitioned into 0h̄Ω, 1h̄Ω,
2h̄Ω, etc., configurations.

Early shell model calculations were generally restricted
to a single shell, such as the 0p or 1s 0d shells, and thus
involved only 0h̄Ω valence nucleon configurations. An ef-
fective interaction is then introduced to account for the
effects of excluded configurations, including very high en-
ergy excitations associated with the hard core in the NN
interaction. The lowest order approximation to this ef-
fective interaction is the two-body G matrix, which links
two-particle states within the model space by a ladder
series for scattering in the excluded space. The resulting
interaction V eff(ab; cd) is a function of the valence-shell
single particle states c, d and a, b that label the starting
and ending states of the ladder, respectively.

In recent years shell model calculations involving two
or more major shells have been frequently performed. A
full multi-h̄Ω basis is one that includes all many-body
configurations, such that Nsum ≤ Nmax for some Nmax.
For example, a calculation of the positive-parity states
in 16O might include all (0 + 2)h̄Ω or (0 + 2 + 4)h̄Ω
many-body configurations, relative to the closed core
(fully occupied 0s and 0p shells). Because of the im-
portance of the nuclear mean field, such a truncation
provides a reasonable starting point for describing the
“long-wavelength” properties of nuclei. A (0 + 2 + 4)h̄Ω
calculation (for which Nmax = 16) of 16O yields a reason-
able description of low-lying excitations, including effects
associated with highly deformed excited states [1].

Such full multi-h̄Ω bases have other appealing proper-
ties. If HO single-particle states are employed, the model
space wave functions can be decomposed so that the rel-
ative degrees of freedom are separated from a pure os-
cillator state center-of-mass component. Thus the over-
completeness of the Slater determinants (which depend
on 3A coordinates, while intrinsic wave functions depend
on 3(A − 1)) can be cured by retaining only those lin-
ear combinations which keep the center of mass in the 0s
state.

A second property has to do with technical difficulties
in evaluating the effective interaction. If, in addition to
defining the basis states, H0 of Eq. (2) plays the role
of the unperturbed Hamiltonian, then the unperturbed

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25181926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


energies of configurations in the excluded space always
exceed those in the model space. In the case of parity-
conserving (parity-nonconserving) interactions, the mini-
mum gap is 2h̄Ω (1h̄Ω). This contrasts sharply with other
choices for the model space. For example, a partial 1h̄Ω
calculation of the negative parity states in 12C in which
the valence nucleons are restricted to the 0p and 1s 0d
shells leads to intermediate states in the core-polarization
process (bubble diagram) with vanishing energy denomi-
nators: particle-hole excitations in the excluded space of
the form 0p(0s)−1 have the same energy, 1h̄Ω, as those
in the model space. While one might attempt to cure
this problem by introducing a spin-orbit interaction in
H0 to break the degeneracy, this tends to produce small
energy denominators of somewhat random sign, leading
to serious convergence problems. Thus one sees that the
gaps characterizing complete multi-h̄Ω bases are quite at-
tractive. As discussed in Ref. [2], this nice feature can
be perserved order by order in calculations of the full
V eff , provided a suitable perturbation scheme for V eff is
employed.

Investigators doing large-basis shell model calculations
in multi-h̄Ω spaces have consistently chosen effective two-
body interactions of the form V eff(ab; cd), just as in tradi-
tional 0h̄Ω calculations. The appropriate effective inter-
action [2] in such spaces must carry an additional index
N spectators

sum V eff(ab; cd;N spectators
sum ), where N spectators

sum la-
bels the total oscillator quanta of the “spectator” (i.e.,
non-interacting) nucleons in the many-body states con-
nected by the matrix element V eff(ab; cd). It is given
by

N spectators
sum = Nsum −Nc −Nd = N ′sum −Na −Nb, (4)

where Nsum and N ′sum are the numbers of the total os-
cillator quanta of the initial and final many-body states,
respectively. In the case of traditional 0h̄Ω calculations,
all basis states are characterized by the same N spectators

sum ,
so this additional index is unnecessary. But for multi-h̄Ω
bases, the N spectators

sum dependence is essential: if model-
space configurations exist with different unperturbed en-
ergies, the gaps and interactions coupling these configu-
rations to the excluded space will differ. The appropriate
energy denominators in the G-matrix ladder sum are not
given just by the initial and final two-particle labels, but
also depend on the energies of the A− 2 “spectator” nu-
cleons.

The omission of the N spectators
sum dependence in re-

cently reported large-space shell-model calculations [3,4]
amounts to neglect of certain many-body processes of
the same unperturbed energy as some retained many-
body processes. While the effects of these neglected
many-body processes are expected to decrease in im-
portance as the number of shells included in the model
space increases, our investigation here, which retains
them through the N spectators

sum dependence of the two-body
effective interaction, will reveal that these neglected ef-
fects are important in present-day calculations.

We shall see in the following calculations that the re-
sulting shifts can be large, amounting to about 5 MeV for
diagonal matrix elements. The approximation in present-
day multi-shell calculations to neglect the N spectators

sum de-
pendence can lead to unattractive consequences. One
example is the apparent need for unrealistic single parti-
cle energies to reduce the splittings between the 0h̄Ω and
2h̄Ω states, as required by experiment.

In this paper we present the results of multi-h̄Ω shell
model calculations for 4He, 5He, 6Li, and 7Li in which
the two-body effective interaction is evaluated with full
N spectators

sum dependence. As a result, we obtain a lowering
of states that are dominated by 1h̄Ω and 2h̄Ω configu-
rations, relative to 0h̄Ω states. This improves the agree-
ment with experiment. The calculation of the G matrix
is described in Sec. II. This work is distinguished from
our previous studies [3,4] in another important aspect,
namely, the extension of the model spaces for light nuclei
to include excitations up to 8h̄Ω. These calculations are
“no core,” performed relative to vacuum and, of course,
include excitations out of the 0s shell. The results are
presented in Sec. III, where a comparison with previous
calculations is also made. The dependence of the results
on the size of the model space is discussed in Sec. IV, and
the consequences of neglecting theN spectators

sum dependence
of the G matrix explored. Our conclusions are given in
Sec. V.

II. MULTI-VALUED G-MATRIX EFFECTIVE
INTERACTIONS

Shell model diagonalizations of the Hamiltonian in
Eq. (1) are performed within truncated Hilbert spaces
containing, hopefully, most of the long-wavelength modes
important to describing properties such as nuclear sizes,
low-lying excitations and collective modes. The neglected
degrees of freedom, e.g., those high-momentum interac-
tions arising from NN interactions at short distances,
must be incorporated into the calculation through ef-
fective interactions (and effective operators). While in
principle an effective interaction exists that will repro-
duce exact eigenvalues in a model space calculation, in
practice it can only be evaluated approximately.

The shell model Hamiltonian we diagonalize is

HSM =
1

2

A∑
i 6=j

(
Tij + V eff

ij (N spectators
sum )

)
+ VCoulomb

+λ

(
Hc.m. −

3

2
h̄Ω

)
, (5)

where Tij = 1
2AM

(pi − pj)2 and

1

2

A∑
i 6=j

Tij =
A∑
i=1

p2
i

2M
− Tc.m. (6)
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with Tc.m. = 1
2AM

(∑A
i=1 pi

)2

. Note that Hc.m. =

Tc.m. + Uc.m. where Uc.m. = AMΩ2

2

(∑A
i=1 ri

)2

. The last

term in Eq. (5) is included in order to project out spuri-
ous center-of-mass motion: inclusion of this term with a
large value of λ produces low-lying excitations with the
center-of-mass in the 0s state. For this procedure to work
properly, the model space must be exactly separable, as
is the case for complete multi-h̄Ω bases.

The bare Coulomb interaction VCoulomb is diagonalized
only within the model space. For the strong potential,
the effective interaction evaluated at the two-body level
has the familiar Bruckner G-matrix [5] form, but with an
important difference in the definition of the Pauli exclu-
sion operator Q,

G(E0, N
spectators
sum ) = V12 + Ṽ12Q(N spectators

sum )

×
1

E0 − (h1 + h2 + Ṽ12)
Q(N spectators

sum )Ṽ12, (7)

where E0 is the energy of the initial two-body state
(i.e., the starting energy), V12 is the bare NN potential,

Ṽ12 = V12−U12, U12 = MΩ2

2A (r1−r2)2, and Q(N spectators
sum )

is the Pauli operator that restricts all intermediate states
to lie in the Pauli-allowed, excluded space. In conven-
tional treatments of the Brueckner G matrix, a very sim-
ilar equation arises, but with a Q that excludes certain
intermediate states based only on the single-particle la-
bels of the two particles involved in the scattering. There
is no N spectators

sum dependence in Q for single shell calcula-
tions but, as discussed above, thisN spectators

sum dependence
arises in multi-h̄Ω calculations.

The index N spectators
sum signifies the role of the full model

space many-body configuration in controlling the inter-
mediate two-particle states available for scattering. In
a shell model calculation whose model space includes all
many-body states with Nsum ≤ Nmax, the allowed inter-
mediate states for the two particles, “1” and “2”, scat-
tered by Ṽ12, are specified by:

N1 +N2 +N spectators
sum > Nmax , (8)

which corresponds to the following Pauli operator:

Q(N spectators
sum ) =

{
0 if N1 +N2 ≤ Nmax −N

spectators
sum ,

1 otherwise.

(9)

In Fig.1, we depict the various spectator-dependent Pauli
operators appropriate for a full 6h̄Ω calculation of 6Li
(Nmax = 8).

The fact that we introduce a spectator dependence to
the G-matrix raises interesting possibilities for identify-
ing specific Pauli-violating processes. Some two-particle
scattering states in the excluded space will place a nu-
cleon in a single-particle state that may be occupied by
a spectator nucleon in a given model space wavefunc-
tion. One might avoid these Pauli violating processes in

a full multi-h̄Ω calculation by labeling Q with the full
set of quantum numbers on which G operates. This, of
course, is impractical. However, for the specific case of
these light nuclei and for N spectators

sum = 0, we can easily
eliminate the Pauli violating processes involving the 0s
nucleons by including the “wings” as depicted in Fig. 1.
However, we have found that the presence or absence of
the wings in the case N spectators

sum = 0 results in minor dif-
ferences in our results due to the large size of the model
spaces.

To provide the reader with some measure of the size of
the effects associated with N spectators

sum , we give in Table
I the matrix elements 〈(0s1/2 0s1/2)|V eff |(0s1/2 0s1/2)〉,
〈(0s1/2 0p3/2)|V eff |(0s1/2 0p3/2)〉, and

〈(0p3/2 0p3/2)|V eff |(0p3/2 0p3/2)〉, that we evaluated for
a full 6h̄Ω calculation of the positive-parity states in 6Li
(which we will discuss in Sec. III C). In this calculation,
Nmax = 8 and Nsum can take on four values (2, 4, 6, 8).
The Table shows that the values of these diagonal ma-
trix elements can shift by up to 3.3 MeV when N spectators

sum

dependence is properly treated.
This “multi-valuedness” is a bookkeeping complication

in shell model studies. However, its inclusion builds in
essential physics previously missing from multi-h̄Ω calcu-
lations. Model-space states of higher unperturbed energy
are now more strongly repelled downwards by effects of
states in the excluded space which are included in G for
the first time. For example, in a (0+2+4)h̄Ω calculation

of 16O, the contribution to G that is second order in Ṽ12

contributes to shifts in the position of the 0h̄Ω config-
uration only because of potential matrix elements with
an unperturbed energy denominator of 6h̄Ω or larger.
However, the 4h̄Ω configurations are shifted by matrix
elements with an energy denominator of 2h̄Ω or larger.
The larger shifts result from a more complete inclusion
of intermediate two-particle states scattering via a spec-
tator dependent definition of Q, which reduces the size
of the Q=0 region as N spectators

sum increases. Since G for
a larger Q=0 region is less “attractive”, numerically, we
find that states that are predominantly of 1h̄Ω and 2h̄Ω
character, which were obtained at energies a few MeV
too high in Ref. [4], are now lowered relative to states
that are predominantly 0h̄Ω in character.

The intent of the present study is to illustrate the ef-
fects attributable to the multivaluedness of G. We there-
fore follow the treatment in Ref. [4] in other respects,
which includes two approximations in the evaluation of
Eq. (7). The first is the substitution of V for Ṽ = V −U .
This considerably improves the convergence of the nu-
merical procedures we employ in evaluating G, since the
growth of the HO U(r) at large r is troublesome. Earlier
studies [6] have shown that neglecting U in terms second
order or higher in V induces errors in calculated binding
energies of a few hundred keV; these errors decrease as
the size of the model space increases.

The second is the replacement of the “starting energy”
E0 in the ladder sum of Eq. (7) by
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ωcd = εc + εd + ∆ , (10)

where (εc + εd) is the unperturbed energy of the initial
two-body state and ∆ is a parameter whose value is ad-
justed to yield a reasonable binding energy. This substi-
tution was introduced and explained in Ref. [4]: it is a
phenomenological correction for the omission of folded di-
agrams and higher-order contributions to the effective in-
teraction, those beyond G that involve the multiple scat-
tering of clusters of three or more nucleons. As some of
these omitted corrections will shift starting energies from
their unperturbed values towards the true eigenvalues, it
is not surprising that a phenomenological shift ∆ is nec-
essary to reproduce experimental binding energies when
a two-body G matrix is used. However, energy differ-
ences are relatively insensitive to the choice of ∆. Such
a state-dependent choice for the starting energy leads to
a non-Hermitian G matrix. But the non-Hermiticity is
found to be small and we obtain a Hermitian effective
interaction by symmetrizing the G matrix:

〈ab|V eff(N spectators
sum )|cd〉J,T

=
1

2

[
〈ab|G(ωcd, N

spectators
sum )|cd〉J,T

+ 〈ab|G(ωab, N
spectators
sum )|cd〉J,T

]
. (11)

We employ the method of Barrett et al. [7] to calculate
the G matrices. For the bare NN interaction V12 in
Eq. (7), we use the non-relativistic version of the new
Nijmegen potential (NijmII) [8]. The HO basis parameter
h̄Ω is fixed at 14 MeV. Calculations for a different choice
of h̄Ω are performed for selected cases for the purpose of
comparison.

III. RESULTS AND DISCUSSION

The shell-model calculations are performed for 4He,
5He, 6Li, and 7Li in large, no-core, model spaces using
the Many-Fermion-Dynamics Shell-Model code [9]. We
properly evaluate the G matrix for full multi-h̄Ω spaces,
resulting in a multi-valued two-body effective interaction.
The calculated results are presented in Tables I to IV
which we discuss below.

A. 4He

For the positive-parity states in 4He, we use a 9-major-
shell model space which allows us to include all config-
urations with Nsum = N1 + N2 + N3 + N4 ≤ 8 [i.e.,
Nmax = 8]. For the negative-parity states, we use a
8-major-shell space and include all configurations with
Nsum ≤ Nmax = 7. The lowest configuration in this nu-
cleus is (0s)4, which has Nsum = 0, so we are doing a full
8h̄Ω (7h̄Ω) calculation for the positive-parity (negative-
parity) states. The calculations involve (Nmax + 1) G

matrices, corresponding to (Nmax + 1) possible values of
N spectators

sum (from 0 to Nmax).
The parameter ∆ in the starting energy is chosen to

be -55 MeV, which yields a reasonable binding energy
of 26.3 MeV. (It should be pointed out that due to the
large size of the model space, the G matrix elements are
a very smooth function of ∆. The binding energy of 4He
increases by less than 1 MeV when ∆ is increased by
10 MeV from -60 MeV to -50 MeV. See Ref. [4] for a
discussion of the sensitivity of the results to ∆.) The
calculated results are given in Table II and plotted in
Fig.2 along with the experimental data, taken from a
recent compilation of Tilley et al. [10] and Ref. [11].

As can be seen from Table II and Fig.2, very good
agreement with experiment is obtained for the energy
spectrum. In particular, the experimental low-lying
negative-parity (“1h̄Ω”) states are reproduced to within
1.2 MeV with a correct level sequence. The first excited
0+ (predominantly “2h̄Ω”) state is obtained at an ex-
citation energy of 21.8 MeV, only 1.6 MeV higher than
experiment.

The importance of the high-energy configurations can
be seen by examining the wave functions. In terms of
major-shell configurations, the calculated g.s. wave func-
tion can be expressed as

[0+
1 ] ' 70%|0h̄Ω〉+ 14%|2h̄Ω〉 + 9%|4h̄Ω〉

+3%|6h̄Ω〉+ 4%|8h̄Ω〉, (12)

while for the first excited state, we obtain

[0+
2 ] ' 8%|0h̄Ω〉 + 61%|2h̄Ω〉+ 15%|4h̄Ω〉

+13%|6h̄Ω〉 + 3%|8h̄Ω〉. (13)

As can be expected, the 0+
1 state is dominated by the 0h̄Ω

configuration and the 0+
2 state is dominated by the 2h̄Ω

configuration. However, we see from the above “wave
functions” that |0+

1 〉 has significant 2h̄Ω and 4h̄Ω admix-
tures while |0+

2 〉 has significant 4h̄Ω and 6h̄Ω admixtures.
Therefore, for a reasonable description of the 0+

1 and 0+
2

states using a HO basis with h̄Ω = 14MeV, one needs
to perform a 4h̄Ω calculation and a 6h̄Ω calculation, re-
spectively. The requirement of a large HO space for con-
vergence of wave functions dominated by 1h̄Ω and 2h̄Ω
components has been established by Ceuleneer et al. in
Ref. [12] where a 10h̄Ω calculation was performed for 4He
using a modified Sussex [13] interaction. Because the HO
potential is too confining at large distances, high-lying
configurations are required to properly describe the shape
of the nuclear surface. Alternatively, one may address
these same physics issues within the effective Hamilto-
nian formalism in a HO space by evaluating the contri-
butions of effective many-body interactions.

The weights of the different major-shell configurations
listed in Eq. (12) and Eq. (13) depend on the choice
of single-particle basis: they would change if we were
to adopt a Hartree-Fock basis or, even, retain HO wave
functions but change the value of the oscillator parame-
ter. One procedure for removing this arbitrariness, for a
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given model space, would be to diagonalize the ground
state one-body density matrix, then transform to a new
basis given by the eigenvectors. The naive “closed shell”
would then be defined by the largest eigenvalues. We will
discuss these issues further in Sec. IV.

The major differences in the spectra resulting from the
present work and Refs. [3,4] appear in the lowering of
the excited states due to increased admixtures of higher
lying configurations for the reasons mentioned above. For
example, the 0+

2 state is lowered by 11.9 MeV from its
excitation energy in Ref. [3] and by 4.3 MeV from its
excitation energy in Ref. [4]. On the other hand, the 0−1
state is lowered by only 0.8 MeV and 1.3 MeV relative to
its excitation energy in Ref. [3] and Ref. [4], respectively.

Since there are a number of differences between the
present work and our previous efforts, we will discuss in
Sec. IV the dependence of our results on model space size
alone with all other ingredients in the calculations held
fixed.

B. 5He

Throughout this work, the unperturbed energy of a
configuration is measured with respect to that of the low-
est configuration (of either parity). For 5He, the lowest
(0h̄Ω) configuration is (0s)4(0p)1 with Nsum = 1. We do
a full 6h̄Ω calculation (Nmax = 7) for the negative-parity
states and a full 7h̄Ω calculation (Nmax = 8) for the
positive-parity states. The parameter ∆ in the starting
energy is taken to be -45 MeV for this and other 0p-shell
nuclei considered in this work. The results are shown in
Table III and in Fig.3. The first excited state (1/2−)
is obtained at an excitation energy of 2.47 MeV. The
well-known 3/2+ state at 16.75 MeV is reproduced at an
energy of 19.06 MeV. We have also obtained a number
of low-lying “1h̄Ω” positive-parity and “2h̄Ω” negative-
parity states that have not yet been identified experimen-
tally. There is a 1/2+ state at an excitation energy of only
4.34 MeV and there are two nearly degenerate 3/2+ and
5/2+ states at about 9.7 MeV. The lowest “2h̄Ω” state
(3/2−) is obtained at an excitation energy of 12.01 MeV.

The energy splitting ∆E between the 1/2− state and
the 3/2− state (g.s.) is of particular interest. Analyses
of experimental data yielded many different values for
∆E, ranging from 1.4 MeV [14] to more than 5 MeV
[15]. In a recent Green’s function Monte Carlo (GFMC)
calculation [16] where the odd neutron is restricted to be
in the p1/2 or p3/2 state (not pure HO 0p states), a small
splitting of 0.8 MeV is obtained. In our calculations, we
notice that ∆E tends to decrease as we include more p
orbitals in the model space. The values for ∆E obtained
in the 0h̄Ω, 2h̄Ω, 4h̄Ω and 6h̄Ω calculations are 2.81, 3.15,
2.89 and 2.47 MeV, respectively. As this series does not
appear to have converged, it is quite possible that still
larger model spaces would yield a result below the 6h̄Ω
value of 2.47 MeV.

Our predictions of the low-lying positive-parity states
agree quite well with other theoretical works [17,18]
where a 1/2+ state at about 5-7 MeV is predicted along
with two additional states (3/2+ and 5/2+) at about 12-
14 MeV, except that our results are slightly lower. These
levels were first obtained by van Hees and Glaudemans
[17] in a (0 + 1)h̄Ω shell-model calculation using a phe-
nomenological interaction (obtained by fitting selected
nuclear properties) and were later supported by other
shell-model calculations using different phenomenological
interactions [18]. These states are expected to be broad
and cannot be easily identified experimentally. However,
they can be seen in an R-matrix analysis of the nucleon-
alpha phase shifts with a channel radius of a ∼ 5 fm [18],
but not with a smaller a of about 3 fm commonly used
before. A large channel radius of 5.5 ± 1.0 fm has been
determined from the stripping and pickup reaction data
[15].

These low-lying positive-parity states were obtained
at higher energies in our previous 3h̄Ω (i.e., Nmax = 4)
single-G calculation [4]. This can be explained by noting
that the calculated wave functions of these states contain
significant higher-shell configurations. For example, for
the 1/2+ state, we obtain

[1/2+
1 ] = 45%|1h̄Ω〉 + 28%|3h̄Ω〉+ 18%|5h̄Ω〉+ 9%|7h̄Ω〉 .

(14)

The calculated wave functions also show that these states
can be roughly described as systems with one neutron
moving in an s or d (not necessarily 1s or 0d) orbitals
outside a 4He core.

The point made by Eq. (14) and the associated discus-
sion may appear provocative. If we try to interpret all
our states as predictions for the locations of resonances,
this would indicate the near absence of a shell gap in 5He.
However, we should always keep in mind that 5He is un-
bound with respect to neutron emission and that all the
states of 5He are experimentally above breakup thresh-
old (i.e. in the continuum). Thus, as we systematically
expand our model space we would expect our calculated
results to approach a continuous spectrum, though pre-
sumably the convergence might be quite slow due to the
use of confined HO wave functions in the shell model
expansion. By analyzing transition strength functions
we would be able to isolate those states which are truly
predicted resonances from the background of continuum
states. However, at the present time, our model space is
too limited to be able to carry out such an analysis. Nev-
ertheless, we expect that states which are experimentally
narrow will be reproduced by our theoretical framework.

The calculated 3/2+ state at 19.06 MeV is dominated
by the configuration (0s)3(0p)2, which is basically the
ground state of 6Li with a proton removed from the 0s
orbital. It can therefore be identified as the 16.75 MeV
state observed experimentally in nucleon knock-out reac-
tions with a 6Li target [19].
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The lowest “2h̄Ω” state is calculated at a surprisingly
low excitation energy of 12.01 MeV with (Jπ, T ) =
(3/2−, 1/2). This state was obtained at a much higher
energy of 21.5 MeV in a 4h̄Ω (i.e., Nmax = 5) single-G
calculation [4]. The dramatic decrease of the excitation
energy is due, again, to the importance of 6h̄Ω admix-
tures, as can be seen from the following decomposition:[
3/2−2

]
= 1%|0h̄Ω〉+ 52%|2h̄Ω〉+ 28%|4h̄Ω〉+ 19%|6h̄Ω〉 .

(15)

The fact that the above wave function contains a large
6h̄Ω component implies that the energy of this state,
now at 12.01 MeV, is likely to be further decreased if
one is able to do an even larger calculation to include
the 8h̄Ω (Nmax = 9) configuration. The second lowest
“2h̄Ω” state is obtained at 15.21 MeV with (Jπ , T ) =
(1/2−, 1/2). These two “2h̄Ω” states were also obtained
by Wolters et al. [20] in a (0 + 2)h̄Ω calculation using an
phenomenological effective interaction, but at an even
lower energy of about 9 MeV (see, however, Ref. [21] for
a comment on this work).

C. 6Li

For this nucleus, we perform a full 6h̄Ω calculation
(Nmax = 8) for the positive-parity states and a full 5h̄Ω
calculation (Nmax = 7) for the negative-parity states.
The results are shown in Table IV and in Fig.4. The six
low-lying states known experimentally are nicely repro-
duced except that the Jπ = 2+, T = 1 state at 5.37 MeV
and the Jπ = 1+ T = 1 state at 5.65 MeV are obtained at
excitation energies about 1 MeV too high. The other four
“0h̄Ω” states are obtained at excitation energies of 9.94,
10.74, 11.38 and 12.93 MeV. The new results presented
here again show some improvement over the previous re-
sults [3,4]. The excitation energies for the first and the
second excited states are closer to experiment than those
obtained in the GFMC calculations [16]. In particular,
the member of the 0+ isospin triplet state is obtained at
an excitation energy of 3.79 MeV, close to the experi-
mental value of 3.56 MeV. This state is of some interest
for the study of the isospin and parity violations [23].

The lowest “2h̄Ω” state that we obtain has Jπ =
1+, T = 0 and an excitation energy of 14.72 MeV. It has
the configuration of 2%|0h̄Ω〉+ 56%|2h̄Ω〉+ 22%|4h̄Ω〉+
19%|6h̄Ω〉. We identify the second lowest “2h̄Ω” state at
16.08 MeV as the experimental 15.8 MeV state [24] since
it has Jπ = 3+. This state has very little overlap with
0h̄Ω configurations; its wave function can be expressed
as 58%|2h̄Ω〉 + 21%|4h̄Ω〉 + 21%|6h̄Ω〉.

Below these “2h̄Ω” states we obtain five negative-
parity “1h̄Ω” states with excitation energies of 10.9 to
14.2 MeV. One should not be surprised if the experimen-
tal energies of these “1h̄Ω” states turn out to be some-
what lower than the values listed in Table IV, obtained

in a 5h̄Ω (Nmax = 7) calculation. We have seen in the
cases of 4He and 5He that the excitation energies of the
“1h̄Ω” states are lowered by 1 to 3 MeV as we go from a
5h̄Ω space to a 7h̄Ω space. However we are not able to
perform a 7h̄Ω (Nmax = 9) calculation for the negative-
parity states in 6Li at the present time.

A 6h̄Ω calculation for 6Li was also attempted by
Bevelacqua [25] who used a modified Sussex interaction
[13]. In that work, all experimentally known states were
quite well reproduced. But several “0h̄Ω” and “1h̄Ω”
states that we obtain here were not given in [25]. Some
of these states, however, were obtained by van Hees et al.
[26] in a (0 + 1)h̄Ω calculation using a phenomenological
interaction. For example, they obtained a 2− state at an
energy of about 9 MeV, lower than our 2− state at 10.86
MeV.

The g.s. magnetic dipole moment is calculated to be
0.840µN , slightly larger than the experimental value of
0.822µN . The g.s. quadrupole moment is calculated to
be −0.067 e fm2, very close to the experimental value of
−0.082 e fm2. These results are obtained by using bare
electromagnetic operators. In principle, these electro-
magnetic operators should also be renormalized in a way
consistent with how the effective interaction is derived
from the bare NN potential. This is particularly impor-
tant when the model space is small. While we hope that
our model spaces are large enough to permit the use of
bare operators, we are aware that this assumption ought
to be verified by explicit calculations of effective opera-
tors.

D. 7Li

The negative-parity states are calculated in a full 4h̄Ω
space (Nmax = 7) and the positive-parity states in a full
5h̄Ω space (Nmax = 8). The results are given in Table
V (see also Fig.5). The theoretical spectrum appears ex-
panded relative to experiment, perhaps indicating that,
for the model spaces we can handle, that the two-body
G matrix is not an adequate approximation to V eff .

However, the energy of the first excited state (1/2−)
agrees very well with experiment (0.46 MeV vs 0.48
MeV). We had previously experienced some difficulty
with this state in single-G calculations using smaller
spaces [3], finding excitation energies that were too low.
The inclusion of high-lying unperturbed configurations is
important for reproducing this state at the experimental
energy. In a 0h̄Ω calculation, the excitation energy of
this state is only 0.195 MeV. When 2h̄Ω configurations
are included, the result increases to 0.498 MeV, which
becomes 0.463 MeV when 4h̄Ω configurations are taken
into account.

The lowest positive-parity state we obtain has Jπ =
1/2+ and T = 1/2 and an excitation energy of
15.264 MeV. This state is dominated by the configura-
tions (0s)3(0p)4 (about 50%) (0s)2(0p)4(1s)1 (12%), and
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(0s)4(0p)2(1s)1 (10%). The other 28% is distributed over
many configurations.

For the g.s. electric quadrupole moment Q, we obtain
−2.37 e fm2, much smaller in magnitude than the exper-
imental value of −4.06 e fm2. We notice that the calcu-
lated quadrupole moment increases in magnitude with
the size of the model space. The results for Q from the
0h̄Ω, 2h̄Ω, and 4h̄Ω calculations are −1.67, −2.16 and
−2.37 e fm2, respectively. Presumably still larger model
spaces are needed to generate the degree of deformation
indicated by the quadrupole moment. However, we are
currently unable to go beyond 4h̄Ω for this nucleus. One
may notice from Table V that the calculated rms point
charge radius is also too small (2.06 fm versus 2.29 fm
from experiment), indicating the calculated wave func-
tion is probably confined to too small a region by the
limited size of the model space. We have repeated the
4h̄Ω calculation for h̄Ω = 11 MeV. The results are also
listed in Table V. Although the rms radius for this choice
of h̄Ω agrees quite well with experiment, the result on the
quadrupole moment Q (−2.67 efm2), though improved
somewhat, is still too small. Therefore changing the
model space through adjustments in the basis parame-
ter h̄Ω alone is not sufficient, given our use of the bare
operator; one has to introduce higher configurations to
realistically describe this deformed nucleus.

IV. DEPENDENCE ON THE SIZE OF THE
MODEL SPACE

In this section we examine the differences arising from
the use of a multi-valued G matrix, rather than a con-
ventional single-valued effective interaction. These dif-
ferences are expected to diminish as the model space is
increased because the increasing energy denominators in
Eq. (7) suppress effects higher order in Ṽ . In Table VI,
the calculated energy and root-mean-square (rms) proton
point radius of the ground state and the excitation energy
of the first excited state in 4He are given for four different
model spaces (Nmax = 2, 4, 6 and 8) and two choices of
h̄Ω (14 and 20 MeV). As expected (see also Fig.6), the
differences between the excitation energies obtained in
the conventional and multi-valued G-matrix calculations
diminish as the model spaces increase. Similarly, the
choice of h̄Ω becomes less important in the larger model
spaces. Note in particular that the calculated g.s. rms
radius is about the same (∼ 1.49 fm) in the 8h̄Ω, multi-
valued G calculations for the two values of h̄Ω, indicating
good convergence for this quantity.

It is clear from Table VI that the increased size of
the model space and the use of an appropriate (multi-
valued) G matrix both contribute to the improved re-
sults for the 0+

2 state in 4He in this work. For exam-
ple, in a conventional (single-valued) G-matrix calcula-
tion with h̄Ω = 14 MeV, the excitation energy of this
state decreases by 0.55 MeV from 22.93 MeV to 22.38

MeV when we go from a 6h̄Ω space to a 8h̄Ω space; in
the 8h̄Ω space, the use of the multi-valued G matrix fur-
ther decreases the result by another 0.56 MeV to 21.82
MeV.

As mentioned in Sec. III A, the relative importance of
different major-shell configurations depends on the choice
of h̄Ω. For h̄Ω = 14 MeV, the configurations of the 0+

1

and 0+
2 states in 4He obtained in 8h̄Ω, multi-valued G-

matrix calculation are given in Eqs. (12,13). For h̄Ω = 20
MeV, we obtain

[0+
1 ] ' 86%|0h̄Ω〉+ 4%|2h̄Ω〉+ 5%|4h̄Ω〉

+2%|6h̄Ω〉+ 3%|8h̄Ω〉 (16)

and

[0+
2 ] ' 0%|0h̄Ω〉 + 60%|2h̄Ω〉+ 20%|4h̄Ω〉

+15%|6h̄Ω〉 + 5%|8h̄Ω〉. (17)

A comparison of the g.s. configurations in Eqs. (12) and
(16) for the two values of h̄Ω shows that h̄Ω = 20 MeV
may be a more reasonable choice for the ground state,
since the g.s. can be better approximated as a 0h̄Ω state.
However, from Eqs. (13) and (17), we can see that the
wave function of the first excited state has stronger 6h̄Ω
and 8h̄Ω components (which means slower convergence
with respect to the size of the model space) for h̄Ω = 20
MeV than for h̄Ω = 14 MeV. This is not surprising, as the
0+

2 state in 4He is loosely bound and has a much larger
radius than the 0+

1 state. Since it is generally much more
difficult to obtain a converged result for the 0+

2 state than
for the 0+

1 state, a basis which leads to faster convergence
of the 0+

2 state is obviously better when both states are
desired. In this sense, h̄Ω = 14 MeV is a better choice
than h̄Ω = 20 MeV for 4He.

V. CONCLUSION

In a multi-h̄Ω model space the two-body G matrix is
dependent on the unperturbed energy of the other A-
2 nucleons. We have used such a multi-valued G ma-
trix in large, no-core, shell-model calculations for light
nuclei. When compared to conventional calculations,
proper treatment of the N spectators

sum dependence of the
G matrix tends to lower the energies of the “1h̄Ω” and
“2h̄Ω” excited states more than the “0h̄Ω” states, bring-
ing energies into better agreement with experiment.

Applying this approach to large, no-core, shell-model
calculations, we have achieved a reasonable description
of the “low-lying” states (including “1h̄Ω” and “2h̄Ω”
states) in light nuclei. With model spaces consisting of
as many as nine HO major shells, the experimentally
known states in 4He, 5He, 6Li, and 7Li have been re-
produced. Very good agreement with experiment has
been obtained for the excited states in 4He, the “single-
particle” 3/2− − 1/2− splitting in 5He and in 7Li, and
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the low-lying spectrum of 6Li, etc.. Some earlier theoret-
ical predictions of additional states in the spectrum have
been confirmed [e.g., a 1/2+ state at 4.3 MeV and two
nearly degenerate states (3/2+ and 5/2+) at 9.7 MeV in
5He]. We have also obtained a few low-lying states that
have neither been observed experimentally nor predicted
theoretically before. For example, we obtain a 3/2− state
at 12.0 MeV in 5He and several “0h̄Ω” and “1h̄Ω” states
below 15 MeV in 6Li. One shortcoming is that the cal-
culated quadrupole moment of the ground state in 7Li
is too small in magnitude when compared with experi-
ment. We attribute this disagreement to the relatively
small size (4h̄Ω) of the model space that is used for this
nucleus; it may be that the bare quadrupole operator is
not appropriate for this space.

By using large, no-core model spaces, we have elimi-
nated adjustable s.p. energies usually involved with shell-
model calculations using effective interactions. However,
it should be emphasized that in calculating the G matri-
ces, we have used an empirical prescription for the start-
ing energy, which involves a parameter ∆. This parame-
ter is adjusted to yield a reasonable binding energy. For
this reason, our calculated binding energies should not
be confused as exact results, which can only be obtained
through a parameter-free approach. Recent GFMC cal-
culations of Pudliner et al. [16] serve as a major step in
this direction. Nevertheless, we believe that once this
parameter is adjusted to reproduce the binding energy,
other nuclear properties can then be predicted.

There are important improvements that could be in-
corporated into future calculations of the type reported
here. Our use of very large model spaces was motivated
by the hope that bare operators and effective interac-
tions approximated by a two-body G matrix might be
successful in such spaces. But presumably the need for
large values of ∆ is connected with the omission of the
folded diagrams and neglected interactions of three-body
and higher clusters in the excluded space. As there are
prospects for improving these aspects of the calculations
[2], we consider the present effort a first step toward the
ultimate goal of accurate shell model calculations based
on realistic NN interactions.

If one were able to generate the exact V eff , energy
eigenvalues should not depend on the choice of the model
space. Thus perhaps the most important result from
this initial exploration of multi-valuedG matrices is that
some improvement was achieved in the rate of conver-
gence of energy eigenvalues, as a function of the com-
plexity of the model space (see, for example, Fig.6). We
would argue that the degree to which our results can be
further improved is an open question: clearly we have
the capacity to put substantial new physics into calcula-
tions of V eff and to generate the corresponding effective
operators.
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TABLE I. Some diagonal matrix elements 〈(ab :
JT )|V eff |(ab : JT )〉 (in MeV) for four possible values
of Nsum in a full 6h̄Ω calculation of the positive-parity
states in 6Li.

Nsum 2 4 6 8

(ab : JT ) = (0s1/2 0s1/2 : 01) -6.689 -6.734 -6.894 -7.371
(ab : JT ) = (0s1/2 0s1/2 : 10) -8.272 -9.006 -9.969 -11.554
(ab : JT ) = (0s1/2 0p3/2 : 10) -1.144 -1.415 -1.769 -2.344
(ab : JT ) = (0s1/2 0p3/2 : 11) -3.768 -3.812 -3.935 -4.273
(ab : JT ) = (0s1/2 0p3/2 : 20) -8.272 -9.006 -9.969 -11.554
(ab : JT ) = (0s1/2 0p3/2 : 21) -1.006 -1.029 -1.058 -1.090
(ab : JT ) = (0p3/2 0p3/2 : 01) -3.227 -3.256 -3.342 -3.588
(ab : JT ) = (0p3/2 0p3/2 : 10) -1.272 -1.575 -1.950 -2.522
(ab : JT ) = (0p3/2 0p3/2 : 21) -1.364 -1.389 -1.439 -1.545
(ab : JT ) = (0p3/2 0p3/2 : 30) -4.179 -4.528 -5.021 -5.821

Table II. The results for 4He from a full 8h̄Ω [Nmax = 8]
calculation for the positive-parity states and a full 7h̄Ω
[Nmax = 7] calculation for the negative-parity states. In
the Table, EB is the binding energy and Ex(Jπn , T ) the
excitation energy of the Jπn , T state. All energies are in
MeV. The dominant major-shell configuration for each
state is given in the column labeled “Main Conf.”. The

g.s. rms point radius for protons
√
〈r2
p〉 is also given.

The “experimental” g.s. rms radius is deduced from the
charge rms radius

√
〈r2
c〉 through (ignoring the neu-

tron charge distribution and other higher-order effects
and assuming a proton rms charge radius of 0.81 fm)
〈r2
p〉 = 〈r2

c 〉 − 0.812.

Observable Main Conf. Mult-valued G Experimenta)

EB — 26.459 28.296√
〈r2
p〉 (fm) — 1.492 1.46

Ex(0+
1 , 0) 0h̄Ω 0 0

Ex(0+
2 , 0) 2h̄Ω 21.824 20.21

Ex(0−1 , 0) 1h̄Ω 21.566 21.01
Ex(2−1 , 0) 1h̄Ω 23.003 21.84
Ex(2−1 , 1) 1h̄Ω 24.214 23.33
Ex(1−1 , 1) 1h̄Ω 24.418 23.64
Ex(1−1 , 0) 1h̄Ω 25.286 24.25
Ex(0−1 , 1) 1h̄Ω 25.370 25.28
Ex(1−2 , 1) 1h̄Ω 25.671 25.95

a) From Ref. [10] except for the rms radius which is from
Ref. [11].

9



Table III. The results for 5He from a full 6h̄Ω [Nmax =
7] calculation for the negative-parity states and a full
7h̄Ω [Nmax = 8] calculation for the positive-parity states.
Calculated states with an excitation energy larger than
23 MeV are not shown. All the states listed in this table
have an isospin T = 1/2. The g.s. electric quadrupole
moment Q and magnetic dipole moment µ are also listed.
See the caption of Table II for more explanations.

Observable Main Conf. Multi-valued G Experimenta)

EB — 25.883 27.410√
〈r2
p〉 (fm) — 1.630 N/A

µ(µN ) — -1.847 N/A
Q(e fm2) — -0.443 N/A

Ex(3/2−1 ) 0h̄Ω 0 0

Ex(1/2−1 ) 0h̄Ω 2.465 4± 1b)

Ex(1/2+
1 ) 1h̄Ω 4.343 see c)

Ex(3/2+
1 ) 1h̄Ω 9.717 see c)

Ex(5/2+
1 ) 1h̄Ω 9.727 see c)

Ex(3/2−2 ) 2h̄Ω 12.006 N/A

Ex(1/2−2 ) 2h̄Ω 15.213 N/A

Ex(7/2−1 ) 2h̄Ω 17.252 N/A

Ex(5/2−1 ) 2h̄Ω 17.296 N/A

Ex(3/2+
2 ) 1h̄Ω 19.060 16.75

Ex(1/2+
2 ) 1h̄Ω 19.895 N/A

Ex(7/2+
1 ) 1h̄Ω 21.908 N/A

Ex(1/2+
3 ) 1h̄Ω 22.187 N/A

Ex(9/2+
1 ) 1h̄Ω 22.723 N/A

a) From Ref. [19].
b) Analyses of experiments give different values ranging
from 1.4 MeV to 5.5 MeV.
c) Previous theoretical works predict a 1/2+ state at 5-7
MeV and a 3/2+ and a 5/2+ state at 12-14 MeV, see
Refs. [17,18].

Table IV. The results for 6Li from a full 6h̄Ω [Nmax = 8]
calculation for the positive-parity states and a full 5h̄Ω
[Nmax = 7] calculation for the negative-parity states.
Calculated states with an excitation energy larger than
18 MeV are not shown. See the caption of Table II for
more explanations.

Observable Main Conf. Multi-valued G Experimenta)

EB — 30.525 31.996√
〈r2
p〉 (fm) — 2.11 2.41

µ(µN ) — 0.840 0.822
Q(e fm2) — -0.067 -0.082
Ex(1+

1 , 0) 0h̄Ω 0 0
Ex(3+

1 , 0) 0h̄Ω 2.619 2.186
Ex(0+

1 , 1) 0h̄Ω 3.786 3.563
Ex(2+

1 , 0) 0h̄Ω 4.713 4.31
Ex(2+

1 , 1) 0h̄Ω 6.406 5.366
Ex(1+

2 , 0) 0h̄Ω 6.764 5.65
Ex(2+

2 , 1) 0h̄Ω 9.942 N/A
Ex(1+

1 , 1) 0h̄Ω 10.742 N/A
Ex(2−1 , 0) 1h̄Ω 10.863 N/A
Ex(1−1 , 0) 1h̄Ω 11.082 N/A
Ex(1+

3 , 0) 0h̄Ω 11.382 N/A
Ex(0+

2 , 1) 0h̄Ω 12.934 N/A
Ex(0−1 , 0) 1h̄Ω 13.147 N/A
Ex(1−1 , 1) 1h̄Ω 13.706 N/A
Ex(2−1 , 1) 1h̄Ω 14.242 N/A
Ex(1+

4 , 0) 2h̄Ω 14.716 N/A
Ex(1−2 , 0) 1h̄Ω 15.422 N/A
Ex(3+

2 , 0) 2h̄Ω 16.083 15.8
Ex(2−2 , 0) 1h̄Ω 16.950 N/A
Ex(0−1 , 1) 1h̄Ω 17.328 N/A
Ex(0+

3 , 1) 2h̄Ω 17.515 N/A

a) From Ref. [19] except for the rms radius which is from
Ref. [22].
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Table V. The results for 7Li from a full 4h̄Ω [Nmax =
7] calculation for the negative-parity states and a full
5h̄Ω [Nmax = 8] calculation for the positive-parity states.
Calculated states with an excitation energy larger than
16 MeV are not shown. See the caption of Table II for
more explanations. In this table, we also list the results
for h̄Ω = 11 MeV.

Observable Main Conf. h̄Ω=14 h̄Ω=11 Experimenta)

EB — 37.533 36.141 39.244√
〈r2
p〉 (fm) — 2.062 2.233 2.29

µ(µN ) — 3.027 3.014 3.2564
Q(e fm2) — -2.372 -2.672 -4.06

Ex(3/2−1 , 1/2) 0h̄Ω 0 0 0

Ex(1/2−1 , 1/2) 0h̄Ω 0.463 0.188 0.4776

Ex(7/2−1 , 1/2) 0h̄Ω 5.249 5.872 4.63

Ex(5/2−1 , 1/2) 0h̄Ω 7.325 7.006 6.68

Ex(5/2−2 , 1/2) 0h̄Ω 8.857 8.473 7.4595

Ex(3/2−2 , 1/2) 0h̄Ω 10.749 9.178 9.85

Ex(7/2−2 , 1/2) 0h̄Ω 11.402 11.012 9.67

Ex(1/2−2 , 1/2) 0h̄Ω 11.608 10.165 N/A

Ex(5/2−2 , 1/2) 0h̄Ω 12.847 11.920 N/A

Ex(3/2−1 , 3/2) 0h̄Ω 12.961 12.592 11.24

Ex(3/2−3 , 1/2) 0h̄Ω 13.237 11.837 N/A

Ex(1/2−3 , 1/2) 0h̄Ω 13.704 12.419 N/A

Ex(1/2+
1 , 1/2) 1h̄Ω 15.264 N/A

Ex(1/2−1 , 3/2) 0h̄Ω 15.780 N/A

a) From Ref. [19] except for the rms radius which is from
Ref. [22].

Table VI. The results for the g.s. energy (in MeV), proton
rms radius (in fm) and the excitation energy (in MeV)
of the first excited state in 4He obtained in the multi-
valued G (m-G) and single-G (s-G) calculations in dif-
ferent model spaces with two choices of h̄Ω (14 and 20
MeV). The difference between the s-G and m-G results
is also given.

h̄Ω Nmax Approach E(0+
1 )

√
〈r2
p〉 Ex(0+

2 )

14 2 s-G -23.18 1.57 26.38
m-G -23.64 1.56 25.17
diff. 0.46 0.01 1.21

4 s-G -25.23 1.57 26.73
m-G -25.95 1.56 25.78
diff. 0.72 0.01 0.95

6 s-G -25.62 1.51 22.93
m-G -26.44 1.49 22.27
diff. 0.82 0.02 0.66

8 s-G -25.62 1.51 22.38
m-G -26.46 1.49 21.82
diff. 0.84 0.02 0.56

20 2 s-G -25.62 1.38 33.05
m-G -25.94 1.37 30.56
diff. 0.32 0.01 2.49

4 s-G -26.34 1.46 31.84
m-G -26.84 1.45 30.23
diff. 0.50 0.01 1.61

6 s-G -25.73 1.46 26.93
m-G -26.27 1.46 25.49
diff. 0.54 0.00 1.44

8 s-G -25.21 1.49 24.71
m-G -25.82 1.48 23.35
diff. 0.61 0.01 1.36

Experiment -28.30 1.46 20.21
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FIGURE CAPTIONS

Figure 1

An illustration of the Q operator appropriate for a full
6h̄Ω calculation of 6Li. The regions interior to the lines
are the Q=0 regions defined in Eq. (9). The lines corre-
spond to the possible values of N spectators

sum , which range
from 0 to Nmax. The contour for N spectators

sum = 0 is given
as a solid line. The wings result from the fact that the
spectator nucleons are in a unique configuration (closed
0s shell), in this case, forbidding scattering into the 0s
shell. The wings make a negligible contribution numeri-
cally and can be ignored. The contours for other values
of N spectators

sum are denoted by dashed lines. Note that a
single-valued G matrix would employ a single contour
and thus neglect much of the physics governing V eff in a
multi-h̄Ω space.

Figure 2

The calculated and experimental low-lying energy
spectrum of 4He.

Figure 3

The calculated and experimental low-lying energy
spectrum of 5He. The first excited state (1/2−) is very
broad; its experimental excitation energy is not well de-
fined. Refs. [17,18] also predict a low-lying 1/2+ state at
5-7 MeV and 3/2+ and 5/2+ states at 12-14 MeV. We
obtain a few “2h̄Ω” (relative to the g.s.) states (e.g., a
3/2− state at 12.88 MeV) that have not been observed
experimentally nor predicted theoretically before. All the
states shown in this Figure have an isospin T = 1/2.

Figure 4

The calculated and experimental low-lying energy
spectrum of 6Li.

Figure 5

The calculated and experimental low-lying energy
spectrum of 7Li. All the states shown in this figure have
an isospin T = 1/2 except for the 3/2− state at 12.96
MeV which has T = 3/2.

Figure 6

(a) The rms point charge radius of the ground state in
4He obtained in multi-valued G (mG) calculations with
model spaces of different sizes [signified by Nmax] using
two values of the HO basis parameter h̄Ω [14 MeV (solid
lines) and 20 MeV (dashed lines)].

(b) Similar to (a) but for the excitation energy of the
first excited 0+ state in 4He. Results from both the multi-
valued G (mG) and single-G (sG) calculations are shown.
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