62 research outputs found

    Infrared Emission from Clusters in the Starforming Disk of He2-10

    Get PDF
    We have made subarcsecond-resolution images of the central 10" of the Wolf-Rayet dwarf galaxy He 2-10 at 11.7 microns, using the Long Wavelength Spectrometer on the Keck Telescope. The spatial distribution of the infrared emission roughly agrees with that of the rising spectrum radio sources seen by Kobulnicky & Johnson (1999) and confirms that those sources are compact HII regions rather than SNR or other objects. The infrared sources are more extended than the subarcsecond rising spectrum radio sources, although the entire complex is still less than 5" in extent. On sizescales of 1" the infrared and radio emission are in excellent agreement, with each source requiring several hundred to a thousand O stars for excitation. The nebulae lie in a flattened disk-like distribution about 240 by 100 pc and provide all of the flux measured by IRAS for the entire galaxy in the 12 micron band; 30% of the total IRAS flux from the galaxy emanates from one 15-30 pc source. In this galaxy, intense star formation, probably triggered by an accretion event, is confined to a central disk which breaks up into distinct nebulae which presumably mark the sites of young super star clusters.Comment: Accepted for Publication in the Astronomical Journa

    A Hubble Space Telescope Imaging Survey of Nearby Active Glactic Nuclei

    Get PDF
    We obtained 500-second F606W WFPC2 images of 256 of the nearest (z<0.035) Seyfert 1,Seyfert 2, and starburst galaxies. Less than 10% show tidal features or multiple nuclei. The incidence of inner starburst rings is about 10% in both classes of Sy galaxies. In contrast, galaxies with H II region emission line spectra appear substantially more irregular because of their much higher specific rates of star formation. An unresolved central continuum source in our HST images is a virtually perfect indicator of a Sy1 spectrum. 52% of these Sy1 point sources are saturated in our images; we use their wings to estimate their magnitudes. The converse is not however true, as over a third of Sy's with direct spectroscopic evidence for broad Balmer wings show no nuclear point source. Like the Sy2's, they have central surface brightnesses consistent with those expected for the bulges of normal galaxies. The frequency of bars in Sy1's and 2's and non-Sys are the same. The Sy2 galaxies are significantly more likely to show nuclear dust absorption, especially in lanes and patches which are irregular or reach close to the nucleus. The difference cannot be explained by different average redshifts or selection techniques. This is confirmed by our morphology classifications, which show that Sy1 nuclei reside in earlier type galaxies than Sy2 nuclei. This intrinsic difference in host galaxy properties may undermine the strong unification hypothesis for Sy galaxies that they appear different due to the orientation of their central engine. The excess galactic dust we see in Sy2's may cause substantial absorption which obscures their hypothesized broad emission-line regions and central nonstellar continua. This galactic dust could produce much of the absorption in Sy2 nuclei which had instead been attributed to a thick dusty accretion torus.Comment: The text of the paper is 23 pages (ms.tex), there are 8 tables, and 9 figures. Figures 1, 2, and 3 are the image gallery (45 pages) and are NOT included here. They can be ftp'ed from ftp.astro.ucla.edu. Log in as anonymous and give your e-mail address as the password. The images are in the /pub/submit/vg/AGNgallery . Figures 4-9 are in eps format and are included here and can be printed using the lpr command in unix system

    First Views of a Nearby LIRG: Star Formation and Molecular Gas in IRAS 04296+2923

    Get PDF
    We present a first look at the local LIRG, IRAS04296+2923. This barred spiral, overlooked because of its location in the Galactic plane, is among the half dozen closest LIRGs. More IR-luminous than either M82 or the Antennae, it may be the best local example of a nuclear starburst caused by bar-mediated secular evolution. We present Palomar J and Pa beta images, VLA maps from 20-1.3cm, a Keck LWS image at 11.7mic and OVRO CO(1-0) and ^13CO(1-0), and 2.7 mm continuum images. The J-band image shows a symmetric barred spiral. Two bright, compact mid-IR/radio sources in the nucleus comprise a starburst that is equivalent to 10^5 O7 stars, probably a pair of young super star clusters separated by 30pc. The nuclear starburst is forming stars at the rate of ~12Msun/yr, half of the total star formation rate for the galaxy of ~25Msun/yr. IRAS04296 is bright in CO, and among the most gas-rich galaxies in the local universe. The CO luminosity of the inner half kpc is equivalent to that of the entire Milky Way. While the most intense CO emission extends over a 15"(2 kpc) region, the nuclear starburst is confined to ~1-2"(150-250 pc) of the dynamical center. From ^13CO, we find that the CO conversion factor in the nucleus is higher than the Galactic value by a factor 3-4, typical of gas-rich spiral nuclei. The nuclear star formation efficiency is M_gas/SFR^nuc = 2.7x10^-8 yr^-1, corresponding to gas consumption timescale, tau_SF^nuc~4x10^7 yrs. The star formation efficiency is ten times lower in the disk, tau_SF^disk~3.3x10^8 yrs. The low absolute star formation efficiency in the disk implies that the molecular gas is not completely consumed before it drifts into the nucleus, and is capable of fueling a sustained nuclear starburst. IRAS04296 is beginning a 100Myr period as a LIRG, during which it will turn much of its 6x10^9Msun of molecular gas into a nuclear cluster of stars. (abridged)Comment: Accepted, Astronomical Journa

    K2-138 g: Spitzer Spots a Sixth Planet for the Citizen Science System

    Get PDF
    K2 greatly extended Kepler's ability to find new planets, but it was typically limited to identifying transiting planets with orbital periods below 40 days. While analyzing K2 data through the Exoplanet Explorers project, citizen scientists helped discover one super-Earth and four sub-Neptune sized planets in the relatively bright (V = 12.21, K = 10.3) K2-138 system, all which orbit near 3:2 mean-motion resonances. The K2 light curve showed two additional transit events consistent with a sixth planet. Using Spitzer photometry, we validate the sixth planet's orbital period of 41.966 ± 0.006 days and measure a radius of 3.44_(-0.31)^(+0.32) R_⊕, solidifying K2-138 as the K2 system with the most currently known planets. There is a sizeable gap between the outer two planets, since the fifth planet in the system, K2-138 f, orbits at 12.76 days. We explore the possibility of additional nontransiting planets in the gap between f and g. Due to the relative brightness of the K2-138 host star, and the near resonance of the inner planets, K2-138 could be a key benchmark system for both radial velocity and transit-timing variation mass measurements, and indeed radial velocity masses for the inner four planets have already been obtained. With its five sub-Neptunes and one super-Earth, the K2-138 system provides a unique test bed for comparative atmospheric studies of warm to temperate planets of similar size, dynamical studies of near-resonant planets, and models of planet formation and migration

    An Improved Transit Measurement for a 2.4 R⊕ Planet Orbiting A Bright Mid-M Dwarf K2–28

    Get PDF
    We present a new Spitzer transit observation of K2–28b, a sub-Neptune (Rp = 2.45 ± 0.28 R⊕) orbiting a relatively bright (V_(mag) = 16.06, K_(mag) = 10.75) metal-rich M4 dwarf (EPIC 206318379). This star is one of only seven with masses less than 0.2 M⊙ known to host transiting planets, and the planet appears to be a slightly smaller analogue of GJ 1214b (2.85 ± 0.20 R⊕). Our new Spitzerobservations were taken two years after the original K2 discovery data and have a significantly higher cadence, allowing us to derive improved estimates for this planet's radius, semimajor axis, and orbital period, which greatly reduce the uncertainty in the prediction of near future transit times for the James Webb Space Telescope (JWST) observations. We also evaluate the system's suitability for atmospheric characterization with JWST and find that it is currently the only small (<3 R⊕) and cool (<600 K) planet aside from GJ 1214b with a potentially detectable secondary eclipse. We also note that this system is a favorable target for near-infrared radial velocity instruments on larger telescopes (e.g., the Habitable Planet Finder on the Hobby–Eberly Telescope), making it one of only a handful of small, cool planets accessible with this technique. Finally, we compare our results with the simulated catalog of the Transiting Exoplanet Survey Satellite (TESS) and find K2–28b to be representative of the kind of mid-M systems that should be detectable in the TESS sample

    Mid-Infrared Selection of Active Galaxies

    Full text link
    Mid-infrared photometry provides a robust technique for identifying active galaxies. While the ultraviolet to mid-infrared continuum of normal galaxies is dominated by the composite stellar black body curve and peaks at approximately 1.6 microns, the ultraviolet to mid-infrared continuum of active galaxies is dominated by a power law. Consequently, with sufficient wavelength baseline, one can easily distinguish AGN from stellar populations. Mirroring the tendency of AGN to be bluer than galaxies in the ultraviolet, where galaxies (and stars) sample the blue, rising portion of stellar spectra, AGN tend to be redder than galaxies in the mid-infrared, where galaxies sample the red, falling portion of the stellar spectra. We report on Spitzer Space Telescope mid-infrared colors, derived from the IRAC Shallow Survey, of nearly 10,000 spectroscopically identified sources from the AGN and Galaxy Evolution Survey. Based on this spectroscopic sample, we find that simple mid-infrared color criteria provide remarkably robust separation of active galaxies from normal galaxies and Galactic stars, with over 80% completeness and less than 20% contamination. Considering only broad-lined AGN, these mid-infrared color criteria identify over 90% of spectroscopically identified quasars and Seyfert 1s. Applying these color criteria to the full imaging data set, we discuss the implied surface density of AGN and find evidence for a large population of optically obscured active galaxies.Comment: 13 pages, 3 figures; submitted to the Astrophysical Journal Letter

    The X-ray and mid-infrared luminosities in luminous type 1 quasars

    Get PDF
    Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity (LMIR{L}_{\mathrm{MIR}}) and the rest-frame 2–10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed {L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}} relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed {L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}} relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different {L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}} relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame 6 μm6\,\mu {\rm{m}}, or L6μm{L}_{6\mu {\rm{m}}}) of our sample of type 1 AGNs follow a bilinear relation in the log–log plane: logLX=(0.84±0.03)×logL6μm/1045\mathrm{log}{L}_{{\rm{X}}}=(0.84\pm 0.03)\times \mathrm{log}{L}_{6\mu {\rm{m}}}/{10}^{45} erg s−1 + (44.60 ± 0.01) for L6μm<1044.79{L}_{6\mu {\rm{m}}}\lt {10}^{44.79} erg s−1, and logLX=(0.40±0.03)×logL6μm/1045\mathrm{log}{L}_{{\rm{X}}}=(0.40\pm 0.03)\times \mathrm{log}{L}_{6\mu {\rm{m}}}/{10}^{45} erg s−1 + (44.51 ± 0.01) for L6μm ⩾1044.79{L}_{6\mu {\rm{m}}}\,\geqslant {10}^{44.79} erg s−1. This suggests that the luminous type 1 quasars have a shallower {L}_{{\rm{X}}}\mbox{--}{L}_{6\mu {\rm{m}}} correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent {L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}} relation and implies that assuming a linear {L}_{{\rm{X}}}\mbox{--}{L}_{6\mu {\rm{m}}} relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars
    • …
    corecore