17 research outputs found

    Loss of myocardial LIF receptor in experimental heart failure reduces cardiotrophin-1 cytoprotection. A role for neurohumoral agonists?

    Get PDF
    OBJECTIVES: Cardiomyocyte loss is involved in the transition from compensatory left ventricular hypertrophy (LVH) to heart failure (HF). Our aim was to investigate the status of the leukaemia inhibitory factor receptor (LIFR)/gp130 survival pathway and its cytoprotective activity in intact cardiac tissue and in cardiomyocytes obtained from adult spontaneously hypertensive rats (SHR) with LVH (non-failing SHR) and from aged SHR with overt HF (failing SHR). METHODS: Cardiac morphometry was assayed by planimetry in an image analysis system. mRNA and protein expression were quantified by real time RT-PCR and Western blotting. Receptors were localized by immunocytochemistry. Trypan blue staining, TUNEL, and MTT cell viability assays were employed to study the cytoprotective activity of cardiotrophin-1 (CT-1) in isolated caridomyocytes. RESULTS: Compared to non-failing SHR, failing SHR exhibited enhanced myocardial cell death (p<0.01) demonstrated by the increase in Bax/Bcl-2 ratio, caspase-3 activation and poly (ADP-ribose) polymerase (PARP) fragmentation. Failing SHR had a 7-fold diminished expression (p<0.01) of LIFR, no changes in gp130, and 1.6-fold increased myocardial expression (p<0.01) of CT-1. In cardiomyocytes isolated from non-failing SHR, recombinant CT-1 inhibited apoptotic and non-apoptotic cell death induced by angiotensin II or hydrogen peroxide. LIFR protein was entirely absent in cardiomyocytes isolated from failing SHR, which were resistant to the cytoprotective effects of CT-1. Finally, stimulation of non-failing SHR cardiomyocytes with angiotensin II, aldosterone, norepinephrine or endothelin-1 significantly decreased (p<0.01) LIFR expression. CONCLUSIONS: These data suggest that loss of CT-1-dependent survival mechanisms may contribute to the increase of cell death associated with HF in SHR. Neurohumoral activation may contribute to this alteration via suppression of LIFR

    A model based on the quantification of complement C4c, CYFRA 21-1 and CRP exhibits high specificity for the early diagnosis of lung cancer

    Get PDF
    Lung cancer screening detects early-stage cancers, but also a large number of benign nodules. Molecular markers can help in the lung cancer screening process by refining inclusion criteria or guiding the management of indeterminate pulmonary nodules. In this study, we developed a diagnostic model based on the quantification in plasma of complement-derived fragment C4c, cytokeratin fragment 21-1 (CYFRA 21-1) and C-reactive protein (CRP). The model was first validated in two independent cohorts, and showed a good diagnostic performance across a range of lung tumor types, emphasizing its high specificity and positive predictive value. We next tested its utility in two clinically relevant contexts: assessment of lung cancer risk and nodule malignancy. The scores derived from the model were associated with a significantly higher risk of having lung cancer in asymptomatic individuals enrolled in a computed tomography (CT)-screening program (OR = 1.89; 95% CI = 1.20–2.97). Our model also served to discriminate between benign and malignant pulmonary nodules (AUC: 0.86; 95% CI = 0.80–0.92) with very good specificity (92%). Moreover, the model performed better in combination with clinical factors, and may be used to reclassify patients with intermediate-risk indeterminate pulmonary nodules into patients who require a more aggressive work-up. In conclusion, we propose a new diagnostic biomarker panel that may dictate which incidental or screening-detected pulmonary nodules require a more active work-up

    TNFA-863 polymorphism is associated with a reduced risk of chronic obstructive pulmonary disease: a replication study

    Get PDF
    We replicated the previously reported association between the TNFA -863 SNP and COPD. TNFA -863A allele may confer a protective effect to the susceptibility to the disease in the Spanish populatio

    Tumor Necrosis Factor Receptor Associated Factor 6 Is Not Required for Atherogenesis in Mice and Does Not Associate with Atherosclerosis in Humans

    Get PDF
    BACKGROUND: Tumor necrosis factor receptor-associated factors (TRAFs) are important signaling molecules for a variety of pro-atherogenic cytokines including CD40L, TNF alpha, and IL1beta. Several lines of evidence identified TRAF6 as a pro-inflammatory signaling molecule in vitro and we previously demonstrated overexpression of TRAF6 in human and Murine atherosclerotic plaques. This study investigated the role of TRAF6-deficiency in mice developing atherosclerosis, a chronic inflammatory disease. METHODOLOGY/PRINCIPAL FINDINGS: Lethally irradiated low density lipoprotein receptor-deficient mice (TRAF6(+/+)/LDLR(-/-)) were reconstituted with TRAF6-deficient fetal liver cells (FLC) and consumed high cholesterol diet for 18 weeks to assess the relevance of TRAF6 in hematopoietic cells for atherogenesis. Additionally, TRAF6(+/-)/LDLR(-/-) mice received TRAF6-deficient FLC to gain insight into the role of TRAF6 deficiency in resident cells. Surprisingly, atherosclerotic lesion size did not differ between the three groups in both aortic roots and abdominal aortas. Similarly, no significant differences in plaque composition could be observed as assessed by immunohistochemistry for macrophages, lipids, smooth muscle cells, T-cells, and collagen. In accord, in a small clinical study TRAF6/GAPDH total blood RNA ratios did not differ between groups of patients with stable coronary heart disease (0.034+/-0.0021, N = 178), acute coronary heart disease (0.029+/-0.0027, N = 70), and those without coronary heart disease (0.032+/-0.0016, N = 77) as assessed by angiography. CONCLUSION: Our study demonstrates that TRAF6 is not required for atherogenesis in mice and does not associate with clinical disease in humans. These data suggest that pro- and anti-inflammatory features of TRAF6 signaling outweigh each other in the context of atherosclerosis

    TNFA-863 polymorphism is associated with a reduced risk of Chronic Obstructive Pulmonary Disease: A replication study

    Get PDF
    <p/> <p>Background</p> <p>TNF-α mediated inflammation is thought to play a key role in the respiratory and systemic features of Chronic Obstructive Pulmonary Disease. The aim of the present study was to replicate and extend recent findings in Taiwanese and Caucasian populations of associations between COPD susceptibility and variants of the <it>TNFA </it>gene in a Spanish cohort.</p> <p>Methods</p> <p>The 3 reported SNPs were complemented with nine tag single nucleotide polymorphisms (SNP) of the <it>TNFA </it>and <it>LTA </it>genes and genotyped in 724 individuals (202 COPD patients, 90 smokers without COPD and 432 healthy controls). Pulmonary function parameters and serum inflammatory markers were also measured in COPD patients.</p> <p>Results</p> <p>The <it>TNFA </it>rs1800630 (-863C/A) SNP was associated with a lower COPD susceptibility (ORadj = 0.50, 95% CI = 0.33-0.77, p = 0.001). The -863A allele was also associated with less severe forms of the disease (GOLD stages I and II) (ORadj = 0.303, 95%CI = 0.14-0.65, p = 0.014) and with lower scores of the BODE index (< 2) (ORadj = 0.40, 95%CI = 0.17-0.94, p = 0.037). Moreover, the -863A carrier genotype was associated with a better FEV<sub>1 </sub>percent predicted (p = 0.004) and a lower BODE index (p = 0.003) over a 2 yrs follow-up period. None of the <it>TNFA </it>or <it>LTA </it>gene variants correlated with the serum inflammatory markers in COPD patients (p > 0.05).</p> <p>Conclusions</p> <p>We replicated the previously reported association between the <it>TNFA </it>-863 SNP and COPD. <it>TNFA </it>-863A allele may confer a protective effect to the susceptibility to the disease in the Spanish population.</p

    Loss of myocardial LIF receptor in experimental heart failure reduces cardiotrophin-1 cytoprotection. A role for neurohumoral agonists?

    No full text
    OBJECTIVES: Cardiomyocyte loss is involved in the transition from compensatory left ventricular hypertrophy (LVH) to heart failure (HF). Our aim was to investigate the status of the leukaemia inhibitory factor receptor (LIFR)/gp130 survival pathway and its cytoprotective activity in intact cardiac tissue and in cardiomyocytes obtained from adult spontaneously hypertensive rats (SHR) with LVH (non-failing SHR) and from aged SHR with overt HF (failing SHR). METHODS: Cardiac morphometry was assayed by planimetry in an image analysis system. mRNA and protein expression were quantified by real time RT-PCR and Western blotting. Receptors were localized by immunocytochemistry. Trypan blue staining, TUNEL, and MTT cell viability assays were employed to study the cytoprotective activity of cardiotrophin-1 (CT-1) in isolated caridomyocytes. RESULTS: Compared to non-failing SHR, failing SHR exhibited enhanced myocardial cell death (p<0.01) demonstrated by the increase in Bax/Bcl-2 ratio, caspase-3 activation and poly (ADP-ribose) polymerase (PARP) fragmentation. Failing SHR had a 7-fold diminished expression (p<0.01) of LIFR, no changes in gp130, and 1.6-fold increased myocardial expression (p<0.01) of CT-1. In cardiomyocytes isolated from non-failing SHR, recombinant CT-1 inhibited apoptotic and non-apoptotic cell death induced by angiotensin II or hydrogen peroxide. LIFR protein was entirely absent in cardiomyocytes isolated from failing SHR, which were resistant to the cytoprotective effects of CT-1. Finally, stimulation of non-failing SHR cardiomyocytes with angiotensin II, aldosterone, norepinephrine or endothelin-1 significantly decreased (p<0.01) LIFR expression. CONCLUSIONS: These data suggest that loss of CT-1-dependent survival mechanisms may contribute to the increase of cell death associated with HF in SHR. Neurohumoral activation may contribute to this alteration via suppression of LIFR

    Impact of ultra-low temperature long-term storage on the preanalytical variability of twentyone common biochemical analytes

    No full text
    Objectives: Retrospective studies frequently assume analytes long-term stability at ultra-low temperatures. However, these storage conditions, common among biobanks and research, may increase the preanalytical variability, adding a potential uncertainty to the measurements. This study is aimed to evaluate long-term storage stability of different analytes at <−70 °C and to assess its impact on the reference change value formula. Methods: Twenty-one analytes commonly measured in clinical laboratories were quantified in 60 serum samples. Samples were immediately aliquoted and frozen at <−70 °C, and reanalyzed after 11 ± 3.9 years of storage. A change in concentration after storage was considered relevant if the percent deviation from the baseline measurement was significant and higher than the analytical performance specifications. Results: Preanalytical variability (CVP) due to storage, determined by the percentage deviation, showed a noticeable dispersion. Changes were relevant for alanine aminotransferase, creatinine, glucose, magnesium, potassium, sodium, total bilirubin and urate. No significant differences were found in aspartate aminotransferase, calcium, carcinoembryonic antigen, cholesterol, C-reactive protein, direct bilirubin, free thryroxine, gammaglutamyltransferase, lactate dehydrogenase, prostatespecific antigen, triglycerides, thyrotropin, and urea. As nonnegligible, CVP must remain included in reference change value formula, which was modified to consider whether one or two samples were frozen. Conclusions: After long-term storage at ultra-low temperatures, there was a significant variation in some analytes that should be considered. We propose that reference change value formula should include the CVP when analyzing samples stored in these conditions

    Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis

    No full text
    Background: Exosomes are nanovesicles released by cells that can be detected in blood. Exosomes contain several molecules, such as cytokines that have potential utility as disease biomarkers. The aim of the present work is to compare six different commercial kits suitable for the clinical laboratory in relation to the efficiency and purity of exosome isolation, and their effect in subsequent cytokines analysis. Methods: Serum exosomes were obtained from 10 volunteers using six commercial kits: exoEasy, ExoQuick, Exo-spin, ME kit, ExoQuick Plus and Exo-Flow. Exosome concentrations and size distributions were quantified by nanoparticle tracking analysis. Exosome markers CD63, CD9 and TSG101 were determined by Western blot. ApoB and albumin were measured using nephelometry. S100A9, CXCL5 and CXCL12 were measured using a Luminex assay. Results: The concentration of particles obtained between different kits varied by a factor of 100. There was no correlation in particle concentrations extracted between different kits, except between ExoQuick and Exo-Flow. The highest exosome purity was achieved with ExoQuick Plus and exoEasy, while the lowest were achieved with ME and ExoQuick. Albumin was present in all exosome extracts analyzed and ApoB in all except those extracted with Exo-Flow and ME. Cytokine detection varied depending on the purification kit used and there was no correlation in cytokine concentrations between samples obtained with different kits. Conclusions: Both the sample and the type of commercial kit used affect the efficiency and purity of exosome isolation. In addition, the exosome purification method deeply affects the capability to detect and quantify cytokines

    TNFA-863 polymorphism is associated with a reduced risk of chronic obstructive pulmonary disease: a replication study

    No full text
    We replicated the previously reported association between the TNFA -863 SNP and COPD. TNFA -863A allele may confer a protective effect to the susceptibility to the disease in the Spanish populatio

    Exploring the Association Between Emphysema Phenotypes and Low Bone Mineral Density in Smokers with and without COPD

    No full text
    Rationale: Emphysema and osteoporosis are tobacco-related diseases. Many studies have shown that emphysema is a strong and independent predictor of low bone mineral density (BMD) in smokers; however, none of them explored its association with different emphysema subtypes. Objective: To explore the association between the different emphysema subtypes and the presence of low bone mineral density in a population of active or former smokers with and without chronic obstructive pulmonary disease (COPD). Methods: One hundred and fifty-three active and former smokers from a pulmonary clinic completed clinical questionnaires, pulmonary function tests, a low-dose chest computed tomography (LDCT) and a dual-energy absorptiometry (DXA) scans. Subjects were classified as having normal BMD or low BMD (osteopenia or osteoporosis). Emphysema was classified visually for its subtype and severity. Logistic regression analysis explored the relationship between the different emphysema subtypes and the presence of low BMD adjusting for other important factors. Results: Seventy-five percent of the patients had low BMD (78 had osteopenia and 37 had osteoporosis). Emphysema was more frequent (66.1 vs 26.3%, p=<0.001) and severe in those with low BMD. Multivariable analysis adjusting for other significant cofactors (age, sex, FEV1, and severity of emphysema) showed that BMI (OR=0.91, 95% CI: 0.76–0.92) and centrilobular emphysema (OR=26.19, 95% CI: 1.71 to 399.44) were associated with low BMD. Conclusion: Low BMD is highly prevalent in current and former smokers. BMI and centrilobular emphysema are strong and independent predictors of its presence, which suggests that they should be considered when evaluating smokers at risk for low BMD
    corecore