6 research outputs found

    Cysteine and iron accelerate the formation of ribose-5-phosphate, providing insights into the evolutionary origins of the metabolic network structure.

    Get PDF
    The structure of the metabolic network is highly conserved, but we know little about its evolutionary origins. Key for explaining the early evolution of metabolism is solving a chicken-egg dilemma, which describes that enzymes are made from the very same molecules they produce. The recent discovery of several nonenzymatic reaction sequences that topologically resemble central metabolism has provided experimental support for a "metabolism first" theory, in which at least part of the extant metabolic network emerged on the basis of nonenzymatic reactions. But how could evolution kick-start on the basis of a metal catalyzed reaction sequence, and how could the structure of nonenzymatic reaction sequences be imprinted on the metabolic network to remain conserved for billions of years? We performed an in vitro screening where we add the simplest components of metabolic enzymes, proteinogenic amino acids, to a nonenzymatic, iron-driven reaction network that resembles glycolysis and the pentose phosphate pathway (PPP). We observe that the presence of the amino acids enhanced several of the nonenzymatic reactions. Particular attention was triggered by a reaction that resembles a rate-limiting step in the oxidative PPP. A prebiotically available, proteinogenic amino acid cysteine accelerated the formation of RNA nucleoside precursor ribose-5-phosphate from 6-phosphogluconate. We report that iron and cysteine interact and have additive effects on the reaction rate so that ribose-5-phosphate forms at high specificity under mild, metabolism typical temperature and environmental conditions. We speculate that accelerating effects of amino acids on rate-limiting nonenzymatic reactions could have facilitated a stepwise enzymatization of nonenzymatic reaction sequences, imprinting their structure on the evolving metabolic network

    A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism

    Get PDF
    Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization in which water reacts with iron containing minerals deep within the Earth's crust. H2 is the electron donor for the most ancient and the only energy releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals—greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)—catalyse the fixation of CO2 with H2 at 100°C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 ”M), pyruvate (up to 10 ”M), methanol (up to 100 ”M), and methane. The results shed light on both the geochemical origin of microbial metabolism and on the nature of abiotic formate and methane synthesis in modern hydrothermal vents

    The evolution of the metabolic network over long timelines

    No full text
    Metabolism is executed by an efficient, interconnected and ancient biochemical system, the metabolic network. Its evolutionary origins are, however, barely understood. We here discuss that because of niche adaptation, the evolutionary selection acting on the metabolic network structure distinguishes modern species and early life forms. Yet, its basic structure remained conserved over more than three billion years of diverging evolution. We speculate that this situation attributes key roles in metabolic network evolution to (i) the reaction properties of central metabolites, (ii) simple catalysts (e.g. metal ions, amino acids) whose importance remained unchanged during evolution, and (iii) the interconnectivity of the network that limits its expansion. The conservation of network structure hence implies that early life forms already used similar metabolic reaction topologies as modern species

    Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway

    No full text
    Autotrophic theories for the origin of life propose that CO2 was the carbon source for primordial biosynthesis. Among the six known CO2 fixation pathways in nature, the acetyl-CoA (AcCoA; or Wood–Ljungdahl) pathway is the most ancient, and relies on transition metals for catalysis. Modern microbes that use the AcCoA pathway typically fix CO2 with electrons from H2, which requires complex flavin-based electron bifurcation. This presents a paradox: how could primitive metabolic systems have fixed CO2 before the origin of proteins? Here, we show that native transition metals (Fe0, Ni0 and Co0) selectively reduce CO2 to acetate and pyruvate—the intermediates and end-products of the AcCoA pathway—in near millimolar concentrations in water over hours to days using 1–40 bar CO2 and at temperatures from 30 to 100 °C. Geochemical CO2 fixation from native metals could have supplied critical C2 and C3 metabolites before the emergence of enzymes
    corecore