149 research outputs found

    The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations

    Get PDF
    (ImH)[trans-RuCl4(DMSO-S)(Im)], (Im = imidazole, DMSO-S = S-bonded dimethylsulfoxide), NAMI-A, is the first anticancer ruthenium compound that successfully completed Phase I clinical trials. NAMI-A shows a remarkable activity against lung metastases of solid tumors, but is not effective in the reduction of primary cancer. The structurally similar (ImH)[trans-RuCl4(Im)(2)], ICR (or KP418), and its indazole analog (KP1019) are promising candidate drugs in the treatment of colorectal cancers, but have no antimetastatic activity. Despite the pharmacological relevance of these compounds, no rationale has been furnished to explain their markedly different activity. While the nature of the chemical species responsible for their antimetastatic/anticancer activity has not been determined, it has been suggested that the difference between reduction potentials of NAMI-A and ICR may be the key to the different biological responses they induce. In this work, Density Functional Theory calculations were performed to investigate the hydrolysis of NAMI-A and ICR in both Ru-III and Ru-II oxidation states, up to the third aquation. In line with experimental findings, our calculations provide a picture of the hydrolysis of NAMI-A and ICR mainly as a stepwise loss of chloride ligands. While dissociation of Im is unlikely under neutral conditions, that of DMSO becomes competitive with the loss of chloride ions as the hydrolysis proceeds. Redox properties of NAMI-A and ICR and of their most relevant hydrolytic intermediates were also studied in order to monitor the effects of biological reductants on the mechanism of action. Our findings may contribute to the identification of the active compounds that interact with biological targets, and to explain the different biological activity of NAMI-A and ICR

    Molecular interactions of carbapenem antibiotics with the multidrug efflux transporter acrb of escherichia coli

    Get PDF
    The drug/proton antiporter AcrB, engine of the major efflux pump AcrAB(Z)-TolC of Escherichia coli and other bacteria, is characterized by its impressive ability to transport chemically diverse compounds, conferring a multi-drug resistance (MDR) phenotype. Although hundreds of small molecules are known to be AcrB substrates, only a few co-crystal structures are available to date. Computational methods have been therefore intensively employed to provide structural and dynamical fingerprints related to transport and inhibition of AcrB. In this work, we performed a systematic computational investigation to study the interaction between representative carbapenem antibiotics and AcrB. We focused on the interaction of carbapenems with the so-called distal pocket, a region known for its importance in binding inhibitors and substrates of AcrB. Our findings reveal how the different physico-chemical nature of these antibiotics is reflected on their binding preference for AcrB. The molecular-level information provided here could help design new antibiotics less susceptible to the efflux mechanism

    Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape

    Get PDF
    Understanding molecular recognition of small molecules by proteins in atomistic detail is key for drug design. Molecular docking is a widely used computational method to mimic ligand-protein association in silico. However, predicting conformational changes occurring in proteins upon ligand binding is still a major challenge. Ensemble docking approaches address this issue by considering a set of different conformations of the protein obtained either experimentally or from computer simulations, e.g., molecular dynamics. However, holo structures prone to host (the correct) ligands are generally poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we introduce a computational approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a set of collective variables that effectively sample different shapes of the binding site, ultimately mimicking the steric effect due to the ligand. We assessed the method on three challenging proteins undergoing different extents of conformational changes upon ligand binding. In all cases our protocol generates a significant fraction of structures featuring a low RMSD from the experimental holo geometry. Moreover, ensemble docking calculations using those conformations yielded in all cases native-like poses among the top-ranked ones

    Higher and lower supramolecular orders for the design of self-assembled heterochiral tripeptide hydrogel biomaterials

    Get PDF
    The self-assembly behaviour of the eight stereoisomers of Val\u2013Phe\u2013Phe tripeptides under physiological conditions is assessed by several spectroscopy and microscopy techniques. We report the first examples of self-organised hydrogels from tripeptides in the L\u2013D\u2013L or D\u2013L\u2013D configuration, besides the expected gels with the D\u2013L\u2013L or L\u2013D\u2013D configuration, thus widening the scope for using amino acid chirality as a tool to drive self-assembly. Importantly, the positions of D- and L-amino acids in the gelling tripeptides determine a higher or lower supramolecular order, which translates into macroscopic gels with different rheological properties and thermal behaviours. The more durable hydrogels perform well in cytotoxicity assays, and also as peptides in solution. An appropriate design of the chirality of self-assembling sequences thus allows for the fine-tuning of the properties of the gel biomaterials. In conclusion, this study adds key details of supramolecular organization that will assist in the ex novo design of assembling chiral small molecules for their use as biomaterials

    Chronic Red Bull Consumption during Adolescence: Effect on Mesocortical and Mesolimbic Dopamine Transmission and Cardiovascular System in Adult Rats

    Get PDF
    Energy drinks are very popular nonalcoholic beverages among adolescents and young adults for their stimulant effects. Our study aimed to investigate the effect of repeated intraoral Red Bull (RB) infusion on dopamine transmission in the nucleus accumbens shell and core and in the medial prefrontal cortex and on cardiac contractility in adult rats exposed to chronic RB consumption. Rats were subjected to 4 weeks of RB voluntary consumption from adolescence to adulthood. Monitoring of in vivo dopamine was carried out by brain microdialysis. In vitro cardiac contractility was studied on biomechanical properties of isolated left-ventricular papillary muscle. The main finding of the study was that, in treated animals, RB increased shell dopamine via a nonadaptive mechanism, a pattern similar to that of drugs of abuse. No changes in isometric and isotonic mechanical parameters were associated with chronic RB consumption. However, a prolonged time to peak tension and half-time of relaxation and a slower peak rate of tension fall were observed in RB-treated rats. It is likely that RB treatment affects left-ventricular papillary muscle contraction. The neurochemical results here obtained can explain the addictive properties of RB, while the cardiovascular investigation findings suggest a hidden papillary contractility impairment

    Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial

    Get PDF
    We report the rational design of a heterochiral hydrophobic tripeptide self-assembling into amphiphilic D-superstructures that yield a self-supportive hydrogel at physiological pH. The material endures cell culture conditions and sustains fibroblast proliferation. Tripeptide superstructures are thoroughly analysed by several techniques

    Chlorpromazine and amitriptyline are substrates and inhibitors of the acrb multidrug efflux pump

    Get PDF
    Efflux is an important mechanism in Gram-negative bacteria conferring multidrug resistance. Inhibition of efflux is an encouraging strategy to restore the antibacterial activity of antibiotics. Chlorpromazine and amitriptyline have been shown to behave as efflux inhibitors. However, their mode of action is poorly under-stood. Exposure of Salmonella enterica serovar Typhimurium and Escherichia coli to chlorpromazine selected for mutations within genes encoding RamR and MarR, regu-lators of the multidrug tripartite efflux pump AcrAB-TolC. Further experiments with S. Typhimurium containing AcrB D408A (a nonfunctional efflux pump) and chlor-promazine or amitriptyline resulted in the reversion of the mutant acrB allele to the wild type. Together, this suggests these drugs are AcrB efflux substrates. Subsequent docking studies with AcrB from S. Typhimurium and E. coli, followed by molecular dynamics simulations and free energy calculations showed that chlorpromazine and amitriptyline bind at the hydrophobic trap, a preferred binding site for substrates and inhibitors within the distal binding pocket of AcrB. Based on these simulations, we suggest that chlorpromazine and amitriptyline inhibit AcrB-mediated efflux by in-terfering with substrate binding. Our findings provide evidence that these drugs are substrates and inhibitors of AcrB, yielding molecular details of their mechanism of action and informing drug discovery of new efflux inhibitors. IMPORTANCE Efflux pumps of the resistance nodulation-cell division (RND) super-family are major contributors to multidrug resistance for most of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acineto-bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. The development of inhibitors of these pumps would be highly desirable; how-ever, several issues have thus far hindered all efforts at designing new efflux in-hibitory compounds devoid of adverse effects. An alternative route to de novo design relies on the use of marketed drugs, for which side effects on human health have been already assessed. In this work, we provide experimental evidence that the antipsychotic drugs chlorpromazine and amitriptyline are inhibi-tors of the AcrB transporter, the engine of the major RND efflux pumps in Escherichia coli and Salmonella enterica serovar Typhimurium. Furthermore, in silico calculations have provided a molecular-level picture of the inhibition mechanism, allowing rationalization of experimental data and paving the way for similar studies with other classes of marketed compounds

    A framework for dissecting affinities of multidrug efflux transporter AcrB to fluoroquinolones

    Get PDF
    Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps

    Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    Get PDF
    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.Comment: 19 pages, 17 figures, accepted for publication in MNRA

    Nanoscale Assembly of Functional Peptides with Divergent Programming Elements

    Get PDF
    Self-assembling peptides are being applied both in the biomedical area and as building blocks in nanotechnology. Their applications are closely linked to their modes of self-assembly, which determine the functional nanostructures that they form. This work brings together two structural elements that direct nanoscale self-association in divergent directions: proline as a β-breaker and the β-structure-associated diphenylalanine motif, into a single tripeptide sequence. Amino acid chirality was found to resolve the tension inherent to these conflicting self-assembly instructions. Stereoconfiguration determined the ability of each of the eight possible Pro-Phe-Phe stereoisomers to self-associate into diverse nanostructures, including nanoparticles, nanotapes, or fibrils, which yielded hydrogels with gel-to-sol transition at a physiologically relevant temperature. Three single-crystal structures and all-atom molecular dynamics simulations elucidated the ability of each peptide to establish key interactions to form long-range assemblies (i,e., stacks leading to gelling fibrils), medium-range assemblies (i.e., stacks yielding nanotapes), or short-range assemblies (i.e., dimers or trimers that further associated into nanoparticles). Importantly, diphenylalanine is known to serve as a binding site for pathological amyloids, potentially allowing these heterochiral systems to influence the fibrillization of other biologically relevant peptides. To probe this hypothesis, all eight Pro-Phe-Phe stereoisomers were tested in vitro on the Alzheimer's disease-associated Aβ(1-42) peptide. Indeed, one nonfibril-forming stereoisomer effectively inhibited Aβ fibrillization through multivalent binding between diphenylalanine motifs. This work thus defined heterochirality as a useful feature to strategically develop future therapeutics to interfere with pathological processes, with the additional value of resistance to protease-mediated degradation and biocompatibility
    corecore