5,891 research outputs found

    The caveats in the diagnosis of anomalous origin of left coronary artery from pulmonary artery (ALCAPA)

    Get PDF
    Anomalous origin of left coronary artery from pulmonary artery (ALCAPA) is an infrequent, well described, but important anomaly of the coronary origin. Early diagnosis and prompt surgical treatment of the disease can be life saving. However, there are several potential sources of error in the seemingly simple stereotype diagnostic pattern. This article reports a case of ALCAPA and allude to some of the caveats in the diagnosis of this entity.peer-reviewe

    Edge-as-a-Service: Towards Distributed Cloud Architectures

    Get PDF
    We present an Edge-as-a-Service (EaaS) platform for realising distributed cloud architectures and integrating the edge of the network in the computing ecosystem. The EaaS platform is underpinned by (i) a lightweight discovery protocol that identifies edge nodes and make them publicly accessible in a computing environment, and (ii) a scalable resource provisioning mechanism for offloading workloads from the cloud on to the edge for servicing multiple user requests. We validate the feasibility of EaaS on an online game use-case to highlight the improvement in the QoS of the application hosted on our cloud-edge platform. On this platform we demonstrate (i) low overheads of less than 6%, (ii) reduced data traffic to the cloud by up to 95% and (iii) minimised application latency between 40%-60%.Comment: 10 pages; presented at the EdgeComp Symposium 2017; will appear in Proceedings of the International Conference on Parallel Computing, 201

    ENORM: A Framework For Edge NOde Resource Management

    Get PDF
    Current computing techniques using the cloud as a centralised server will become untenable as billions of devices get connected to the Internet. This raises the need for fog computing, which leverages computing at the edge of the network on nodes, such as routers, base stations and switches, along with the cloud. However, to realise fog computing the challenge of managing edge nodes will need to be addressed. This paper is motivated to address the resource management challenge. We develop the first framework to manage edge nodes, namely the Edge NOde Resource Management (ENORM) framework. Mechanisms for provisioning and auto-scaling edge node resources are proposed. The feasibility of the framework is demonstrated on a PokeMon Go-like online game use-case. The benefits of using ENORM are observed by reduced application latency between 20% - 80% and reduced data transfer and communication frequency between the edge node and the cloud by up to 95\%. These results highlight the potential of fog computing for improving the quality of service and experience.Comment: 14 pages; accepted to IEEE Transactions on Services Computing on 12 September 201

    Power Modelling for Heterogeneous Cloud-Edge Data Centers

    Get PDF
    Existing power modelling research focuses not on the method used for developing models but rather on the model itself. This paper aims to develop a method for deploying power models on emerging processors that will be used, for example, in cloud-edge data centers. Our research first develops a hardware counter selection method that appropriately selects counters most correlated to power on ARM and Intel processors. Then, we propose a two stage power model that works across multiple architectures. The key results are: (i) the automated hardware performance counter selection method achieves comparable selection to the manual selection methods reported in literature, and (ii) the two stage power model can predict dynamic power more accurately on both ARM and Intel processors when compared to classic power models.Comment: 10 pages,10 figures,conferenc

    DYVERSE: DYnamic VERtical Scaling in Multi-tenant Edge Environments

    Full text link
    Multi-tenancy in resource-constrained environments is a key challenge in Edge computing. In this paper, we develop 'DYVERSE: DYnamic VERtical Scaling in Edge' environments, which is the first light-weight and dynamic vertical scaling mechanism for managing resources allocated to applications for facilitating multi-tenancy in Edge environments. To enable dynamic vertical scaling, one static and three dynamic priority management approaches that are workload-aware, community-aware and system-aware, respectively are proposed. This research advocates that dynamic vertical scaling and priority management approaches reduce Service Level Objective (SLO) violation rates. An online-game and a face detection workload in a Cloud-Edge test-bed are used to validate the research. The merits of DYVERSE is that there is only a sub-second overhead per Edge server when 32 Edge servers are deployed on a single Edge node. When compared to executing applications on the Edge servers without dynamic vertical scaling, static priorities and dynamic priorities reduce SLO violation rates of requests by up to 4% and 12% for the online game, respectively, and in both cases 6% for the face detection workload. Moreover, for both workloads, the system-aware dynamic vertical scaling method effectively reduces the latency of non-violated requests, when compared to other methods
    • …
    corecore