5,891 research outputs found
The caveats in the diagnosis of anomalous origin of left coronary artery from pulmonary artery (ALCAPA)
Anomalous origin of left coronary artery from pulmonary artery (ALCAPA) is an
infrequent, well described, but important anomaly of the coronary origin. Early
diagnosis and prompt surgical treatment of the disease can be life saving. However,
there are several potential sources of error in the seemingly simple stereotype
diagnostic pattern. This article reports a case of ALCAPA and allude to some of the caveats in the diagnosis of this entity.peer-reviewe
Edge-as-a-Service: Towards Distributed Cloud Architectures
We present an Edge-as-a-Service (EaaS) platform for realising distributed
cloud architectures and integrating the edge of the network in the computing
ecosystem. The EaaS platform is underpinned by (i) a lightweight discovery
protocol that identifies edge nodes and make them publicly accessible in a
computing environment, and (ii) a scalable resource provisioning mechanism for
offloading workloads from the cloud on to the edge for servicing multiple user
requests. We validate the feasibility of EaaS on an online game use-case to
highlight the improvement in the QoS of the application hosted on our
cloud-edge platform. On this platform we demonstrate (i) low overheads of less
than 6%, (ii) reduced data traffic to the cloud by up to 95% and (iii)
minimised application latency between 40%-60%.Comment: 10 pages; presented at the EdgeComp Symposium 2017; will appear in
Proceedings of the International Conference on Parallel Computing, 201
ENORM: A Framework For Edge NOde Resource Management
Current computing techniques using the cloud as a centralised server will
become untenable as billions of devices get connected to the Internet. This
raises the need for fog computing, which leverages computing at the edge of the
network on nodes, such as routers, base stations and switches, along with the
cloud. However, to realise fog computing the challenge of managing edge nodes
will need to be addressed. This paper is motivated to address the resource
management challenge. We develop the first framework to manage edge nodes,
namely the Edge NOde Resource Management (ENORM) framework. Mechanisms for
provisioning and auto-scaling edge node resources are proposed. The feasibility
of the framework is demonstrated on a PokeMon Go-like online game use-case. The
benefits of using ENORM are observed by reduced application latency between 20%
- 80% and reduced data transfer and communication frequency between the edge
node and the cloud by up to 95\%. These results highlight the potential of fog
computing for improving the quality of service and experience.Comment: 14 pages; accepted to IEEE Transactions on Services Computing on 12
September 201
Power Modelling for Heterogeneous Cloud-Edge Data Centers
Existing power modelling research focuses not on the method used for
developing models but rather on the model itself. This paper aims to develop a
method for deploying power models on emerging processors that will be used, for
example, in cloud-edge data centers. Our research first develops a hardware
counter selection method that appropriately selects counters most correlated to
power on ARM and Intel processors. Then, we propose a two stage power model
that works across multiple architectures. The key results are: (i) the
automated hardware performance counter selection method achieves comparable
selection to the manual selection methods reported in literature, and (ii) the
two stage power model can predict dynamic power more accurately on both ARM and
Intel processors when compared to classic power models.Comment: 10 pages,10 figures,conferenc
DYVERSE: DYnamic VERtical Scaling in Multi-tenant Edge Environments
Multi-tenancy in resource-constrained environments is a key challenge in Edge
computing. In this paper, we develop 'DYVERSE: DYnamic VERtical Scaling in
Edge' environments, which is the first light-weight and dynamic vertical
scaling mechanism for managing resources allocated to applications for
facilitating multi-tenancy in Edge environments. To enable dynamic vertical
scaling, one static and three dynamic priority management approaches that are
workload-aware, community-aware and system-aware, respectively are proposed.
This research advocates that dynamic vertical scaling and priority management
approaches reduce Service Level Objective (SLO) violation rates. An online-game
and a face detection workload in a Cloud-Edge test-bed are used to validate the
research. The merits of DYVERSE is that there is only a sub-second overhead per
Edge server when 32 Edge servers are deployed on a single Edge node. When
compared to executing applications on the Edge servers without dynamic vertical
scaling, static priorities and dynamic priorities reduce SLO violation rates of
requests by up to 4% and 12% for the online game, respectively, and in both
cases 6% for the face detection workload. Moreover, for both workloads, the
system-aware dynamic vertical scaling method effectively reduces the latency of
non-violated requests, when compared to other methods
- …