36 research outputs found
Molecular changes underlying pulmonary emphysema and chronic bronchitis in Chronic Obstructive Pulmonary Disease: An updated review
The aim of this review is to update and synthesize the molecular mechanisms that lead to the heterogeneous effect on tissue remodeling observed in the two most important clinical phenotypes of chronic obstructive pulmonary disease (COPD), pulmonary emphysema (PE) and chronic bronchitis (CB). Clinical and experimental evidence suggests that this heterogeneous response to promote PE, CB, or both, is related to differentiated genetic, epigenetic, and molecular conditions. Specifically, a tendency toward PE could be related to a variant in the DSP gene, SIRT1 downregulation, macrophage polarization to M1, as well as the involvement of the noncanonical Wnt5A signaling pathway, among other alterations. Additionally, in advanced stages of COPD, PE development is potentiated by dysregulations in autophagy, which promotes senescence and subsequently cell apoptosis, through exacerbated inflammasome activation and release of caspases. On the other hand, CB or the pro-fibrotic phenotype could be potentiated by the downregulated activity of HDAC2, the activation of the TGF-β/Smad or Wnt/β-catenin signaling pathways, macrophage polarization to M2, upregulation of TIMP-1, and/or the presence of the epithelial-mesenchymal transition (EMT) mechanism. Interestingly, the upregulated activity of MMPs, especially MMP-9, is widely involved in the development of both phenotypes. Furthermore, MMP-9 and MMP-12 enhance the severity, perpetuation, and exacerbation of COPD, as well as the development of autoimmunity in this disease
The Importance of Lactose in the Human Diet:Outcomes of a Mexican Consensus Meeting
Lactose is a unique component of breast milk, many infant formulas and dairy products, and is widely used in pharmaceutical products. In spite of that, its role in human nutrition or lactose intolerance is generally not well-understood. For that reason, a 2-day-long lactose consensus meeting with health care professionals was organized in Mexico to come to a set of statements for which consensus could be gathered. Topics ranging from lactase expression to potential health benefits of lactose were introduced by experts, and that was followed by a discussion on concept statements. Interestingly, lactose does not seem to induce a neurological reward response when consumed. Although lactose digestion is optimal, it supplies galactose for liver glycogen synthesis. In infants, it cannot be ignored that lactose-derived galactose is needed for the synthesis of glycosylated macromolecules. At least beyond infancy, the low glycemic index of lactose might be metabolically beneficial. When lactase expression decreases, lactose maldigestion may lead to lactose intolerance symptoms. In infancy, the temporary replacing of lactose by other carbohydrates is only justified in case of severe intolerance symptoms. In those who show an (epi)genetic decrease or absence of lactase expression, a certain amount (for adults mostly up to 12 g per portion) of lactose can still be consumed. In these cases, lactose shows beneficial intestinal-microbiota-shaping effects. Avoiding lactose-containing products may imply a lower intake of other important nutrients, such as calcium and vitamin B-12 from dairy products, as well as an increased intake of less beneficial carbohydrates
Insulin glargine affects the expression of Igf-1r, Insr, and Igf-1 genes in colon and liver of diabetic rats
Objective(s): The mitogenic effect of the analogous insulin glargine is currently under debate since several clinical studies have raised the possibility that insulin glargine treatment has a carcinogenic potential in different tissues. This study aimed to evaluate the Igf-1r, Insr, and Igf-1 gene expression in colon and liver of streptozotocin-induced diabetic rats in response to insulin glargine, neutral protamine Hagedorn (NPH) insulin, and metformin treatments. Materials and Methods: Male Wistar rats were induced during one week with streptozotocin to develop Type 2 Diabetes (T2D) and then randomly distributed into four groups. T2D rats included in the first group received insulin glargine, the second group received NPH insulin, the third group received metformin; finally, untreated T2D rats were included as the control group. All groups were treated for seven days; after the treatment, tissue samples of liver and colon were obtained. Quantitative PCR (qPCR) was performed to analyze the Igf-1r, Insr and Igf-1 gene expression in each tissue sample. Results: The liver tissue showed overexpression of the Insr and Igf-1r genes (P>0.001) in rats treated with insulin glargine in comparison with the control group. Similar results were observed for the Insr gene (P>0.011) in colonic tissue of rats treated with insulin glargine. Conclusion: These observations demonstrate that insulin glargine promote an excess of insulin and IGF-1 receptors in STZ-induced diabetic rats, which could overstimulate the mitogenic signaling pathways
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression
The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight). In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca2+ action potentials. Determination of the current through ATP-dependent K+ channels (KATP channels) revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h), the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes
Reduction of lns-1 gene expression and tissue insulin levels in n5-STZ rats
Objective: The high global incidence of type 2 diabetes has challenged researchers to establish animal models that resemble the chronic stage observed in type 2 diabetes patients. One such model is induced by neonatal streptozotocin (n-STZ) administration to rat pups at 0, 2, or 5 days after birth. In this study, we assessed lns-1 gene expression and tissue insulin levels as well as serum concentration of glucose and insulin, insulin resistance, and histological changes of the islets of Langerhans in n5-STZ rats after 20-weeks post-induction. Methods: Wistar rat pups were randomly distributed into a control group and a streptozotocin-induced group. Experimental induction involved a single intraperitoneal injection of streptozotocin (150 mg/kg) into neonates at five days after birth. Results: At 20 weeks post-induction, streptozotocin-induced rats exhibited increased serum glucose levels, reduced serum insulin levels, impaired glucose metabolism and insulin resistance compared to control rats. Histologically, streptozotocin-induced rats exhibited atrophic islets, vacuolization, and significantly fewer insulin-positive cells. lns-1 gene expression was significantly decreased in n5-STZ rats in comparison to the control group. Conclusion: Our findings support that the n5-STZ model 20 weeks post-induction represents an appropriate experimental tool to study T2D and to evaluate novel therapeutic agents and targets that involve insulin gene expression and secretion, as well as complications caused by chronic diabetes
Comparative Screening of the Liver Gene Expression Profiles from Type 1 and Type 2 Diabetes Rat Models
Experimental animal models of diabetes can be useful for identifying novel targets related to disease, for understanding its physiopathology, and for evaluating emerging antidiabetic treatments. This study aimed to characterize two rat diabetes models: HFD + STZ, a high-fat diet (60% fat) combined with streptozotocin administration (STZ, 35 mg/kg BW), and a model with a single STZ dose (65 mg/kg BW) in comparison with healthy rats. HFD + STZ- induced animals demonstrated a stable hyperglycemia range (350–450 mg/dL), whereas in the STZ-induced rats, we found glucose concentration values with a greater dispersion, ranging from 270 to 510 mg/dL. Moreover, in the HFD + STZ group, the AUC value of the insulin tolerance test (ITT) was found to be remarkably augmented by 6.2-fold higher than in healthy animals (33,687.0 ± 1705.7 mg/dL/min vs. 5469.0 ± 267.6, respectively), indicating insulin resistance (IR). In contrast, a more moderate AUC value was observed in the STZ group (19,059.0 ± 3037.4 mg/dL/min) resulting in a value 2.5-fold higher than the average exhibited by the control group. After microarray experiments on liver tissue from all animals, we analyzed genes exhibiting a fold change value in gene expression 2 (p-value <0.05). We found 27,686 differentially expressed genes (DEG), identified the top 10 DEGs and detected 849 coding genes that exhibited opposite expression patterns between both diabetes models (491 upregulated genes in the STZ model and 358 upregulated genes in HFD + STZ animals). Finally, we performed an enrichment analysis of the 849 selected genes. Whereas in the STZ model we found cellular pathways related to lipid biosynthesis and metabolism, in the HFD + STZ model we identified pathways related to immunometabolism. Some phenotypic differences observed in the models could be explained by transcriptomic results; however, further studies are needed to corroborate these findings. Our data confirm that the STZ and the HFD + STZ models are reliable experimental models for human T1D and T2D, respectively. These results also provide insight into alterations in the expression of specific liver genes and could be utilized in future studies focusing on diabetes complications associated with impaired liver function