19,286 research outputs found
_Limusaurus_ and bird digit identity
_Limusaurus_ is a remarkable herbivorous ceratosaur unique among theropods in having digits II, III and IV, with only a small metacarpal vestige of digit I. This raises interesting questions regarding the controversial identity of avian wing digits. The early tetanuran ancestors of birds had tridactyl hands with digital morphologies corresponding to digits I, II & III of other dinosaurs. In bird embryos, however, the pattern of cartilage formation indicates that their digits develop from positions that become digits II, III, & IV in other amniotes. _Limusaurus_ has been argued to provide evidence that the digits of tetanurans, currently considered to be I, II and III, may actually be digits II, III, & IV, thus explaining the embryological position of bird wing digits. However, morphology and gene expression of the anterior bird wing digit specifically resemble digit I, not II, of other amniotes. We argue that digit I loss in _Limusaurus_ is derived and thus irrelevant to understanding the development of the bird wing
Constant of Motion for several one-dimensional systems and outlining the problem associated with getting their Hamiltonians
The constants of motion of the following systems are deduced: a relativistic
particle with linear dissipation, a no-relativistic particle with a time
explicitly depending force, a no-relativistic particle with a constant force
and time depending mass, and a relativistic particle under a conservative force
with position depending mass. The problem of getting the Hamiltonian for these
systems is determined by getting the velocity as an explicit function of
position and generalized linear momentum, and this problem can be solved a
first approximation for the first above system.Comment: 15 pages, Te
- …