23 research outputs found

    Insulin receptor and IGF-I receptor Bioactivity in Health and Disease

    Get PDF
    Insulin was discovered in 1921 by Banting and Best and its structure elucidated in 1955. The first insulin bioassays appeared in the 1940s. First, rats were injected with a range of known concentrations of purified commercial or ‘standard’ insulin and the subsequent fall in blood glucose levels was measured. Then an unknown sample of human plasma was administered to a rat and its insulin concentration was assumed to be identical to the standard dilution that caused the same fall in glucose levels. Due to poor correlations between measured blood glucose levels and calculated insulin levels, these bioassays were replaced by in vitro bioassays. Metabolic parameters, such as rate of glucose uptake in response to dose-response curves of known insulin concentrations were measured using isolated tissues, such as the hemidiaphragm or epididymal fat pad from the rat. Also these in vitro bioassays for plasma insulin were not very successful due to high inter-assay variability, their laborious nature and due to a growing doubt that they were not specific for insulin. Maybe even more importantly, in 1959 Leonards described a substance in normal human fasting serum that, like insulin, stimulated glucose oxidation and triglyceride synthesis in adipose tissue but that, unlike insulin, could not be extracted from plasma into acid-ethanol. In 1963, Froesch et. al. found that serum from guinea pigs immunized against insulin, suppressed insulin action in fat tissue, but it had no effect on Leonards’s insulin-like substance and so the term nonsuppressible insulin like activity (NSILA) was born

    The insulin-like growth factor-I receptor stimulating activity (IRSA) in health and disease

    Get PDF
    Determination of true IGF-I bioactivity in serum and other biological fluids is still a substantial challenge. The IGF-IR Kinase Receptor Activation assay (IGF-IR KIRA assay) is a novel tool to asses IGF-IR stimulating activity (IRSA) and has opened a new era in studying the IGF system. In this paper we discuss many studies showing that measuring IRSA by the IGF-IR KIRA assay often provides fundamentally different information about the IGF system than the commonly used total IGF-I immunoassays. With the IGF-IR KIRA assay phosphorylation of tyrosine residues of the IGF-IR is used as read out to quantify IRSA in unknown (serum) samples. The IGF-IR KIRA assay gives information about net overall effects of circulating IGF-I, IGF-II, IGFBPs and IGFBP-proteases on IGF-IR activation and seems especially superior to immunoreactive total IGF-I in monitoring therapeutic interventions. Although the IRSA as measured by the IGF-IR KIRA assay probably more closely reflects true bioactive IGF-I than measurements of total IGF-I in serum, the IGF-IR KIRA assay in its current form does not give information about all the post-receptor intracellular events mediated by the IGF-IR. Interestingly, in several conditions in health and disease IRSA measured by the IGF-IR KIRA assay is considerably higher in interstitial fluid and ascites than in serum. This suggests that both the paracrine (local) and endocrine (circulating) IRSA should be measured to get a complete picture about the role of the IGF system in health and disease

    Insulin and its analogues and their affinities for the IGF1 receptor

    No full text
    Insulin analogues have been developed in an attempt to achieve a more physiological replacement of insulin and thereby a better glycaemic control. However, structural modification of the insulin molecule may result in altered binding affinities and activities to the IGF1 receptor (IGF1R). As a consequence, insulin analogues may theoretically have an increased mitogenic action compared to human insulin. In view of the lifelong exposure and large patient populations involved, insulin analogues with an increased mitogenic effect in comparison to human insulin may potentially constitute a major health problem, since these analogues may possibly induce the growth of pre-existing neoplasms. This hypothesis has been evaluated extensively in vitro and also in vivo by using animal models. In vitro, all at present commercially available insulin analogues have lower affinities for the insulin receptor (IR). Although it has been suggested that especially insulin analogues with an increased affinity for the IGF1R (such as insulin glargine) are more mitogenic when tested in vitro in cells expressing a high proportion of IGF1R, the question remains whether this has any clinical consequences. At present, there are several uncertainties which make it very difficult to answer this question decisively. In addition, recent data suggest that insulin (or insulin analogues)-mediated stimulation of IRs may play a key role in the progression of human cancer. More detailed information is required to elucidate the exact mechanisms as to how insulin analogues may activate the IR and IGF1R and how this activation may be linked to mitogenesis

    IGF-IR targeted therapy: Past, present and future

    Get PDF
    The IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons why IGF-I R targeted therapy fails to inhibit growth of human cancers. It has become clear that intracellular signaling pathways are highly interconnected and complex instead of being linear and simple. One of the most potent candidates for failure of IGF-IR targeted therapy is the insulin receptor isoform A (IR-A). Activation of the IR-A by insulin-like growth factor-II (IGF-II) bypasses the IGF-IR and its inhibition. Another factor may be that anti-cancer treatment may reduce IGF-IR expression. IGF-IR blocking drugs may also induce hyperglycemia and hyperinsulinemia, which may further stimulate cell growth. In addition, circulating IGF-IRs may reduce therapeutic effects of IGF-IR targeted therapy. Nevertheless, it is still possible that the IGF-IR may be a useful adjuvant or secondary target for the treatment of human cancers. Development of functional inhibitors that affect the IGF-IR and IR-A may be necessary to overcome resistance and to make IGF-IR targeted therapy successful. Drugs that modify alternative downstream effects of the IGF-IR, so called "biasing agonists," should also be considered

    Insulin glargine is more potent in activating the human IGF-I receptor than human insulin and insulin detemir

    No full text
    Objective: To investigate whether human insulin (HI) and insulin analogues differ in their ability to activate the human IGF-I receptor (IGF-IR), the human insulin receptor A (IR-A) and the human insulin receptor B (IR-B) in vitro. Methods: HI. short-acting insulin analogues (insulin aspart; insulin lispro) and long-acting insulin analogues (insulin glargine; insulin detemir) were compared by using kinase receptor activation (KIRA) bioassays specific for IGF-IR, IR-A or IR-B, respectively. These assays quantify ligand activity by measuring receptor auto-phosphorylation upon ligand binding. HI and insulin analogues were tested in a range from 0.1 to 100 nM. Results: Short-acting analogues: Overall, short-acting insulin analogues did not differ substantially from HI, nor from each other. Insulin lispro was slightly more potent than HI and insulin aspart in activating the IGF-IR, only reaching statistical significance at 100 nM (p1 nM (p<0.05). Conclusions: Insulin glargine was more potent in activating the IGF-IR than HI and insulin detemir. Since KIRA bioassays do not mimic the exact in vivo situation, further research is needed to find out whether our data have implications for clinical use of insulin glargine. (C) 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved

    Reminiscences of Some Models of Japanese Style Vessels

    Get PDF
    We investigated 1) the ability of purified glargine (GLA), metabolites 1 (M1) and 2 (M2), IGF-I, and NPH insulin to activate the insulin receptor (IR)-A and IR-B and IGF-I receptor (IGF-IR) in vitro; 2) plasma concentrations of GLA, M1, and M2 during longterm insulin therapy in type 2 diabetic patients; and 3) IR-A and IR-B activation in vitro induced by serum from patients treated with GLA or NPH insulin. A total of 104 patients (age 56.3 ± 0.8 years, BMI 31.4 ± 0.5 kg/m2, and A1C 9.1 ± 0.1% [mean ± SE]) were randomized to GLA or NPH insulin therapy for 36 weeks. Plasma concentrations of GLA, M1, and M2 were determined by liquid chromatography- tandem mass spectrometry assay. IR-A, IR-B, and IGF-IR autophosphorylation was induced by purified hormones or serum by kinase receptor activation assays. In vitro, M1 induced comparable IR-A, IR-B, and IGF-IR autophosphorylation (activation) as NPH insulin. After 36 weeks, M1 increased from undetectable
    corecore