2,720 research outputs found

    Best approximation by diagonal compact operators

    Get PDF
    We study the existence and characterization properties of compact Hermitian operators C on a separable Hilbert space H such that ||C|| is less or equal than || C + D ||, for all D in D(K(H)). This property is equivalent to || C || = min{||C+D||: D in D(K(H))} = dist (C,D(K(H))), where D(K(H)) denotes the space of compact diagonal operators in a fixed base of H and ||.|| is the operator norm. We also exhibit a positive trace class operator that fails to attain the minimum in a compact diagonal.Comment: 12 page

    Non positively curved metric in the space of positive definite infinite matrices

    Get PDF
    We introduce a Riemannian metric with non positive curvature in the (infinite dimensional) manifold Σ∞ of positive invertible operators of a Hilbert space H, which are scalar perturbations of Hilbert-Schmidt operators. The (minimal) geodesics and the geodesic distance are computed. It is shown that this metric, which is complete, generalizes the well known non positive metric for positive definite complex matrices. Moreover, these spaces of finite matrices are naturally imbedded in Σ∞.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentin

    Thompson-type formulae

    Get PDF
    Let X and Y be two nxn Hermitian matrices. In the article "Proof of a conjectured exponential formula" (Linear and Multilinear Algebra (19) 1986, 187-197) R. C. Thompson proved that there exist two nxn unitary matrices U and V such that eiXeiY=ei(UXU∗+VBV∗). e^{i X}e^{i Y}=e^{i (UXU^*+VBV^*)}. In this note we consider extensions of this result to compact operators as well as to operators in an embeddable II1_1 factor

    Metric geodesics of isometries in a Hilbert space and the extension problem

    Get PDF
    We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Recht, Lázaro. Universidad Simón Bolívar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentin
    • …
    corecore