28 research outputs found

    Learning quadrangulated patches for 3D shape parameterization and completion

    Full text link
    We propose a novel 3D shape parameterization by surface patches, that are oriented by 3D mesh quadrangulation of the shape. By encoding 3D surface detail on local patches, we learn a patch dictionary that identifies principal surface features of the shape. Unlike previous methods, we are able to encode surface patches of variable size as determined by the user. We propose novel methods for dictionary learning and patch reconstruction based on the query of a noisy input patch with holes. We evaluate the patch dictionary towards various applications in 3D shape inpainting, denoising and compression. Our method is able to predict missing vertices and inpaint moderately sized holes. We demonstrate a complete pipeline for reconstructing the 3D mesh from the patch encoding. We validate our shape parameterization and reconstruction methods on both synthetic shapes and real world scans. We show that our patch dictionary performs successful shape completion of complicated surface textures.Comment: To be presented at International Conference on 3D Vision 2017, 201

    Fast View Synthesis with Deep Stereo Vision

    Full text link
    Novel view synthesis is an important problem in computer vision and graphics. Over the years a large number of solutions have been put forward to solve the problem. However, the large-baseline novel view synthesis problem is far from being "solved". Recent works have attempted to use Convolutional Neural Networks (CNNs) to solve view synthesis tasks. Due to the difficulty of learning scene geometry and interpreting camera motion, CNNs are often unable to generate realistic novel views. In this paper, we present a novel view synthesis approach based on stereo-vision and CNNs that decomposes the problem into two sub-tasks: view dependent geometry estimation and texture inpainting. Both tasks are structured prediction problems that could be effectively learned with CNNs. Experiments on the KITTI Odometry dataset show that our approach is more accurate and significantly faster than the current state-of-the-art. The code and supplementary material will be publicly available. Results could be found here https://youtu.be/5pzS9jc-5t

    Vibration damping using low-wave-speed media with applications to precision machines

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references (p. 178-182).Vibration and noise are an ever-present problem in the majority of mechanical systems, from consumer products to precision manufacturing systems. But most approaches for vibration suppression are expensive and invasive, so only a small subset of the techniques developed in research labs are widely used. In this thesis, we present a novel wave-based damping approach for the suppression of vibration in machines and structures. Our studies show that significant broad-band damping can be attained with little added mass via dynamic interaction between a structure and a low-density, low-wave-speed medium (such as a foam or powder). This damping phenomenon has great promise for many applications because it is robust (that is, not tuned), does not introduce significant creep into a structure, can accommodate large strains, and can be realized using materials that are light weight, low cost, durable, insensitive to temperature, and easy to package. We report on several experiments in which flexural and longitudinal vibration are attenuated using this approach. Experiments on flexural vibration of structures filled with low-density powder show that high damping is obtained (with loss factors as high as 12 percent for a powder fill whose mass is 2.3 percent of that of the beam) over a broad frequency range. Somewhat surprisingly, the response is found to be linear over a wide range of amplitudes. We propose that the powder can be modeled as a fluid in which pressure waves can propagate and find that such a model matches the experiments well. These findings suggest that any moderately lossy medium in which the speed of wave propagation is sufficiently low can be used to obtain similar responses.(cont.) We find that low-density foams coupled to structures exhibit com- parable attenuations over a somewhat broader frequency range, and that the responses can be accurately predicted if dilatation and shear waves are included in the model. We develop simplified models for these phenomena, and thence obtain guidelines for design of structures incorporating low-wave-speed media. The approach is compared to other damping techniques, and applications to belt- driven positioning systems and precision flexure assemblies are described. .by Kripa K. Varanasi.Ph.D

    Modélisation Spatio-Temporelle des scènes dynamiques 3D à partir de données visuelles

    No full text
    Space-time models (or 4D models) are descriptions of dynamic activities of the real world, that can be stored, analyzed by computers and visualized at distance. Digital imaging and computing technologies of today have matured to a level capable of recording human activities in rich three dimensional detail, and across a length of time. Such photographic 4D models shall in the future be the equivalents of photographic video of today, and produce equivalent artifacts of human culture and heritage. In this thesis, we are concerned with the problem of building such space-time models from the bottoms up through a multi-camera environment. Our contributions are primarily towards estimating motion, both at a coarse and at a dense level from surfaces reconstructed in this fashion
    corecore