4 research outputs found

    The transcriptional control of the VEGFA-VEGFR1 (FLT1) axis in alternatively polarized murine and human macrophages

    Get PDF
    Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions

    Predictive value of molecular subtypes and APOBEC3G for adjuvant chemotherapy in urothelial bladder cancer

    No full text
    Abstract Objective Although targeted approaches have become available in second‐ and third‐line settings, platinum‐based chemotherapy remains the standard first‐line treatment for advanced muscle‐invasive bladder cancer (MIBC). Therefore, the prediction of platinum resistance is of utmost clinical importance. Methods In this study, we established a routine compatible method for the molecular classification of MIBC samples according to various classification systems and applied this method to evaluate the impact of subtypes on survival after adjuvant chemotherapy. This retrospective study included 191 patients with advanced MIBC (pT≄3 or pN+) who underwent radical cystectomy, with or without adjuvant chemotherapy. A 48‐gene panel and classifier rule set were established to determine molecular subtypes according to TCGA, MDA, LundTax, and Consensus classifications. Additionally, 12 single platinum‐predictive candidate genes were assessed. The results were correlated with patients' clinicopathological and follow‐up data and were validated using independent data sets. Results Our final evaluation of 159 patients demonstrated better survival in the luminal groups for those who received chemotherapy compared with those who did not. In contrast, no such differences were observed in basal subtypes. The use of chemotherapy was associated with better survival in patients with high APOBEC3G expression (p < 0.002). This association was confirmed using an independent data set of patients who received neoadjuvant platinum therapy. Conclusions The proposed method robustly replicates the most commonly used transcriptome‐based subtype classifications from paraffin‐embedded tissue samples. The luminal, but not basal, molecular subtypes had the greatest benefit from adjuvant platinum therapy. We identified and validated APOBEC3G as a novel predictive marker for platinum‐treated patients

    Predictive value of molecular subtypes and APOBEC3G for adjuvant chemotherapy in urothelial bladder cancer

    No full text
    Objective: Although targeted approaches have become available in second- and third-line settings, platinum-based chemotherapy remains the standard first-line treatment for advanced muscle-invasive bladder cancer (MIBC). Therefore, the prediction of platinum resistance is of utmost clinical importance. Methods: In this study, we established a routine compatible method for the molecular classification of MIBC samples according to various classification systems and applied this method to evaluate the impact of subtypes on survival after adjuvant chemotherapy. This retrospective study included 191 patients with advanced MIBC (pT≄3 or pN+) who underwent radical cystectomy, with or without adjuvant chemotherapy. A 48-gene panel and classifier rule set were established to determine molecular subtypes according to TCGA, MDA, LundTax, and Consensus classifications. Additionally, 12 single platinum-predictive candidate genes were assessed. The results were correlated with patients' clinicopathological and follow-up data and were validated using independent data sets. Results: Our final evaluation of 159 patients demonstrated better survival in the luminal groups for those who received chemotherapy compared with those who did not. In contrast, no such differences were observed in basal subtypes. The use of chemotherapy was associated with better survival in patients with high APOBEC3G expression (p < 0.002). This association was confirmed using an independent data set of patients who received neoadjuvant platinum therapy. Conclusions: The proposed method robustly replicates the most commonly used transcriptome-based subtype classifications from paraffin-embedded tissue samples. The luminal, but not basal, molecular subtypes had the greatest benefit from adjuvant platinum therapy. We identified and validated APOBEC3G as a novel predictive marker for platinum-treated patients
    corecore