2 research outputs found

    Chitosan/thyme oil systems as affected by stabilizing agent: Physical and antimicrobial properties

    Get PDF
    Antimicrobial biopolymer films and coatings are of great interest for many applications. Different chitosan systems were prepared and characterized to evaluate the effect of their composition on the physical and antimicrobial properties. Three types of emulsifiers (Tween 20, 80, and 85) were used as stabilizing agents, combined with thyme essential oil (from two producers) applied as an active substance. A predominant role of the applied stabilizer and its hydrophilic-lipophilic balance value was proven. The incorporation of thyme essential oil and surfactant into the chitosan matrix led to a significant decrease of particle size in film-forming solutions, as well as a thickness increase and the enhancement of the barrier properties in chitosan films. Antimicrobial effects were provided even at the lowest tested concentration of thyme essential oil. Hence, the prepared chitosan films represent promising candidates in antimicrobial packaging applications. © 2019 by the authors

    Transdermal absorption of active substances from cosmetic vehicles

    No full text
    Background: Cosmetic products mean any substance or mixture intended to be placed in contact with the external parts of the human body (eg, epidermis, lips) and should not pass to the lower parts and penetrate to the skin. As a part of evaluation of cosmetic safety, the transdermal absorption of substances should be investigated. Materials and Methods: In vitro absorption was investigated with Franz diffusion cells on untreated porcine skin and specimens of the same treated with 15%wt. SLS. The integrity of the skin was discerned by gauging transdermal electrical conductivity (TEC), the concentration of caffeine absorbed by the samples of skin membrane by liquid chromatography, which took place by applying an emulsion and/or a gel containing active hydration agents (urea, sodium hyaluronate, and sericin). Results: The greatest extent of caffeine penetration was seen for pretreatment with just SLS; similar results were in skin treated with the base gel with 10%wt. urea. In the skin treated with the base emulsion only, the amount of caffeine absorbed was twofold less; this increased after adding the active hydration substances. The values measured for TEC corresponded with the amount of caffeine absorbed. Conclusion: The gel proved to be the more potent vehicle for the active ingredient, as it demonstrated greater transdermal caffeine penetration than the emulsions, correlating with the degree of damage to the skin as detected by TEC. © 2019 Wiley Periodicals, Inc
    corecore