110 research outputs found

    Bradykinin -induced vasodilatation : Role of age, ACE1-inhibitory peptide, mas- and bradykinin receptors

    Get PDF
    Bradykinin exerts its vascular actions via two types of receptors, the non-constitutively expressed bradykinin receptor type 1 (BR1) and the constitutive type 2 receptor (BR2). Bradykinin-induced vasorelaxation is age-dependent, a phenomenon related to the varying amounts of BR1 and BR2 in the vasculature. Isoleucine-proline-proline (Ile-Pro-Pro), a bioactive tripeptide, lowers elevated blood pressure and improves impaired endothelium-dependent vasorelaxation in hypertensive rats. It inhibits angiotensin converting enzyme 1 (ACE1). Other mechanisms of action have also been postulated. The aims of the study were to clarify the underlying mechanisms of the age-dependency of bradykinin-induced vasodilatation such as the roles of the two bradykinin receptors, themas-receptor and synergism with Ile-Pro-Pro. The vascular response studies were conducted using mesenteric artery and aorta rings from normotensive 6 wk. (young) and 22 wk. (old) Wistar rats. Cumulative dosing of acetylcholine, bradykinin and angiotensin(1-7) (Ang(1-7))were tested in phenylephrine-induced vasoconstriction with or without 10 min pre-incubation with antagonists against BR1-, BR2- or mas-receptors,Ang(1-7) or ACE1-inhibitors captopril and Ile-Pro-Pro. The bradykinin-induced vasorelaxation in vitro was age-dependent and it was improved by pre incubation with Ile-Pro-Pro, especially in old rats with endothelial dysfunction. The mas-receptor antagonist, D-Pro7-Ang(1-7) abolished bradykinin-induced relaxation totally. Interestingly, BR1 and BR2 antagonists only slightly reduced bradykinin-induced vasorelaxation, as an evidence for the involvement of other mechanisms in addition to receptor activation. In conclusion, bradykinin-induced vasorelaxation was age -dependent and He-Pro-Pro improved it. Mas receptor antagonist abolished relaxation while bradykinin receptor antagonist only slightly reduced it, suggesting that bradykinin-induced vasorelaxation is regulated also by other mechanisms than the classical BR1/BR2 pathway. (C) 2016 Elsevier Inc: All rights reserved.Peer reviewe

    The expression of Mas-receptor of the renin-angiotensin system in the human eye

    Get PDF
    The local renin-angiotensin system has been held to be expressed in many organs, including the eye. It has an important role in the regulation of local fluid homeostasis, cell proliferation, fibrosis, and vascular tone. Mas-receptor (Mas-R) is a potential receptor acting mainly opposite to the well-known angiotensin II receptor type 1. The aim of this study was to determine if Mas-R is expressed in the human eye. Seven enucleated human eyes were used in immunohistochemical detection of Mas-R and its endogenous ligand angiotensin (1-7) [Ang(1-7)]. Both light microscopy and immunofluorescent detection methods were used. A human kidney preparation sample was used as control. The Mas-R was found to have nuclear localization, and localized in the retinal nuclear layers and in the structures of the anterior segment of the eye. A cytoplasmic immunostaining pattern of Ang(1-7) was found in the inner and outer nuclear and plexiform layers of the retina and in the ciliary body. To the best of our knowledge, this is the first report showing Mas-R expression in the human eye. Its localization suggests that it may have a role in physiological and pathological processes in the anterior part of the eye and in the retina.Peer reviewe

    Evidence for local aldosterone synthesis in the large intestine of the mouse

    Get PDF
    Aldosterone, the main physiological mineralocorticoid, regulates sodium and potassium balance in the distal convoluted tubule of the kidney. Aldosterone is synthesized from cholesterol in the adrenal cortex in a sequence of enzymatic steps. Recently however, several tissues or cells e.g. brain, heart, blood vessels, kidneys and adipocytes have been shown to possess capability to produce aldosterone locally, and there is some evidence that this occurs also in the intestine. Colon expresses mineralocorticoid receptors and is capable of synthesizing corticosterone, the second last intermediate on the route to aldosterone from cholesterol. Based on such reports and on our preliminary finding, we hypothesized that aldosterone could be synthesized locally in the intestine and therefore we measured the concentration of aldosterone as well as the protein and gene expression of aldosterone synthase (CYP11B2), an enzyme responsible on aldosterone synthesis, from the distal section of the gastrointestinal tract of 10-week-old Balb/c male mice. It is known that sodium deficiency regulates aldosterone synthesis in adrenal glands, therefore we fed the mice with low (0.01%), normal (0.2%) and high-sodium (1.6%) diets for 14 days. Here we report that, aldosterone was detected in colon and cecum samples. Measurable amounts of CYP11B2 protein were detected by Western blot and Elisa analysis from both intestinal tissues. We detected CYP1182 gene expression from the large intestine along with immunohistochemical findings of CYP11B2 in colonic wall. Sodium depletion increased the aldosterone concentration in plasma compared to control and high-sodium groups as well as in the intestine compared to mice fed with the high-sodium diet. To summarize, this study further supports the presence of aldosterone and the enzyme needed to produce this mineralocorticoid in the murine large intestine.Peer reviewe
    • …
    corecore