12 research outputs found

    Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms

    Get PDF
    : Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections

    Online information on face masks: analysis of websites in Italian and English returned by different search engines.

    Get PDF
    OBJECTIVE: Countries have major differences in the acceptance of face mask use for the prevention of COVID-19. This work aims at studying the information online in different countries in terms of information quality and content. DESIGN: Content analysis. METHOD: We analysed 450 webpages returned by searching the string 'are face masks dangerous' in Italy, the UK and the USA using three search engines (Bing, Duckduckgo and Google) in August 2020. The type of website and the stance about masks were assessed by two raters for each language and inter-rater agreement reported as Cohen's kappa. The text of the webpages was collected from the web using WebBootCaT and analysed using a corpus analysis software to identify issues mentioned. RESULTS: Most pages were news outlets, and few (2%-6%) from public health agencies. Webpages with a negative stance on masks were more frequent in Italian (28%) than English (19%). Google returned the highest number of mask-positive pages and Duckduckgo the lowest. Google also returned the lowest number of pages mentioning conspiracy theories and Duckduckgo the highest. Webpages in Italian scored lower than those in English in transparency (reporting authors, their credentials and backing the information with references). When issues about the use of face masks were analysed, mask effectiveness was the most discussed followed by hypercapnia (accumulation of carbon dioxide), contraindication in respiratory disease and hypoxia, with issues related to their contraindications in mental health conditions and disability mentioned by very few pages. CONCLUSIONS: This study suggests that: (1) public health agencies should increase their web presence in providing correct information on face masks; (2) search engines should improve the information quality criteria in their ranking; (3) the public should be more informed on issues related to the use of masks and disabilities, mental health and stigma arising for those people who cannot wear masks

    Development and in vitro characterization of a humanized scFv against fungal infections

    Get PDF
    : The resistance and the birth of new intrinsic and multidrug-resistant pathogenic species like C. auris is creating great concern in the antifungal world. Given the limited drug arsenal and the lack of effectiveness of the available compounds, there is an urgent need for innovative approaches. The murine mAb 2G8 was humanized and engineered in silico to develop a single-chain fragment variable (hscFv) antibody against β-1,3-glucans which was then expressed in E. coli. Among the recombinant proteins developed, a soluble candidate with high stability and affinity was obtained. This selected protein is VL-linker-VH oriented, and it is characterized by the presence of two ubiquitin monomers at the N-terminus and a His tag at the C-terminus. This construct, Ub2-hscFv-His, guaranteed stability, solubility, efficient purification and satisfactory recovery of the recombinant product. HscFv can bind β-1,3-glucans both as coated antigens and on C. auris and C. albicans cells similarly to its murine parental and showed long stability and retention of binding ability when stored at 4°, -20° and -80° C. Furthermore, it was efficient in enhancing the antifungal activity of drugs caspofungin and amphotericin B against C. auris. The use of biological drugs as antifungals is limited; here we present a promising hscFv which has the potential to be useful in combination with currently available antifungal drugs

    A new humanized antibody is effective against pathogenic fungi in vitro

    Get PDF
    Invasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp., Cryptococcus spp., and Aspergillus spp. and even if four classes of antifungals are available (Azoles, Echinocandins, Polyenes and Pyrimidine analogues), the side effects of drugs and fungal acquired and innate resistance represent the major hurdles to be overcome. Monoclonal antibodies are powerful tools currently used as diagnostic and therapeutic agents in different clinical contexts but not yet developed for the treatment of invasive fungal infections. In this paper we report the development of the first humanized monoclonal antibody specific for β-1,3 glucans, a vital component of several pathogenic fungi. H5K1 has been tested on C. auris, one of the most urgent threats and resulted efficient both alone and in combination with Caspofungin and Amphotericin B showing an enhancement effect. Our results support further preclinical and clinical developments for the use of H5K1 in the treatment of patients in need

    AFM evaluation of a humanized recombinant antibody affecting C. auris cell wall and stability

    No full text
    : Fungal infections are increasingly impacting on the health of the population and particularly on subjects with a compromised immune system. The resistance phenomenon and the rise of new species carrying sometimes intrinsic and multi-drug resistance to the most commonly used antifungal drugs are greatly concerning healthcare organizations. As a result of this situation, there is growing interest in the development of therapeutic agents against pathogenic fungi. In particular, the Candida genus is responsible for severe life-threatening infections and among its species, C. auris is considered an urgent threat by the Center for Disease Control and Prevention, and is one of the three leading causes of morbidity and mortality worldwide. H5K1 is a humanized monoclonal antibody (hmAb) that selectively binds to β-1,3-glucans, vital components of the fungal cell wall. It has been previously demonstrated that it is active against Candida species, especially against C. auris, reaching its greatest potential when combined with commercially available antifungal drugs. Here we used atomic force microscopy (AFM) to assess the effects of H5K1, alone and in combination with fluconazole, caspofungin and amphotericin B, on C. auris cells. Through an extensive exploration we found that H5K1 has a significant role in the perturbation and remodeling of the fungal cell wall that is reflected in the loss of whole cell integrity. Moreover, it contributes substantially to the alterations in terms of chemical composition, stiffness and roughness induced specifically by caspofungin and amphotericin B. In addition to this, we demonstrated that AFM is a valuable technique to evaluate drug-microorganism interaction

    Functionalized 3D scaffolds for engineering the hematopoietic niche

    No full text
    Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing

    MiR-126 and miR-146a as Melatonin-Responsive Biomarkers for Neonatal Brain Ischemia

    No full text
    Despite advances in obstetric and neonatal care, challenges remain in early identification of neonates with encephalopathy due to hypoxia-ischemia who are undergoing therapeutic hypothermia. Therefore, there is a deep search for biomarkers that can identify brain injury. The aims of this study were to investigate the serum and brain expressions of two potential biomarkers, miR-126/miR-146a, in a preclinical model of hypoxia-ischemia (HI)-induced brain injury, and to explore their modulation during melatonin treatment. Seven-day-old rats were subjected to permanent ligation of the right carotid artery followed by 2.5 h hypoxia (HI). Melatonin (15 mg/kg) was administered 5 min after HI. Serum and brain samples were collected 1, 6 and 24 h after HI. Results show that HI caused a significant increase in the circulating levels of both miR-126 and miR-146a during the early phase of ischemic brain damage development (i.e. 1 h), with a parallel and opposite pattern in the ischemic cerebral cortex. These effects are not observed 24 h later. Treatment with melatonin restored the HI-induced effects on miR-126/miR-146a expressions, both in the cerebral cortex and in serum. We conclude that miR-126/miR-146a are promising biomarkers of HI injury and demonstrate an associated change in concentration following melatonin treatment
    corecore