7 research outputs found

    Viscoelastic properties of suspensions of noncolloidal hard spheres in a molten polymer

    Get PDF
    We report an experimental study on suspensions of solid particles in a viscoelastic polymer matrix. A commercial entangled poly(ε- caprolactone) was used as the suspending fluid. Noncolloidal solid spheres (diameter = 15 μm) made of polymethylmethacrylate were dispersed in the polymer via a solvent casting method. The volume fraction of the spheres was varied from 5% to 30%, thus allowing to explore both dilute and concentrated regimes. Electron scanning microscopy demonstrated homogeneous dispersion of the spheres in the matrix. We measured the rheological properties of the suspensions both in linear and nonlinear regimes with both dynamic and transient tests. The experimental results demonstrate the reinforcement effect of the particles. Both viscous and elastic moduli increase as the concentration of the particles is increased. The results show good agreement with available theories, simulations, and previous experimental data. In particular, the second order parameter of the quadratic equation that describes the dependence of the shear viscosity of the suspension upon the volume fraction of particles is in agreement with the predicted value found by Batchelor [G. K. Batchelor and J. T. Green, “The hydrodynamic interaction of two small freely-moving spheres in a linear flow field,” J. Fluid Mech. 56, 375–400 (1972); G. K. Batchelor and J. T. Green, “The determination of the bulk stress in a suspension of spherical particles to order c2,” J. Fluid Mech. 56, 401–427 (1972); and G. K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech. 83, 97–117 (1977)]. We probe experimentally that the linear rheological behavior of suspensions of particles in viscoelastic fluids is the same as for Newtonian fluids

    Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers

    Get PDF
    Thermoplastic polymer–filler composites are excellent materials for bone tissue engineering (TE) scaffolds, combining the functionality of fillers with suitable load-bearing ability, biodegradability, and additive manufacturing (AM) compatibility of the polymer. Two key determinants of their utility are their rheological behavior in the molten state, determining AM processability and their mechanical load-bearing properties. We report here the characterization of both these physical properties for four bone TE relevant composite formulations with poly(ethylene oxide terephthalate)/poly(butylene terephthalate (PEOT/PBT) as a base polymer, which is often used to fabricate TE scaffolds. The fillers used were reduced graphene oxide (rGO), hydroxyapatite (HA), gentamicin intercalated in zirconium phosphate (ZrP-GTM) and ciprofloxacin intercalated in MgAl layered double hydroxide (MgAl-CFX). The rheological assessment showed that generally the viscous behavior dominated the elastic behavior (G″ > G′) for the studied composites, at empirically determined extrusion temperatures. Coupled rheological–thermal characterization of ZrP-GTM and HA composites showed that the fillers increased the solidification temperatures of the polymer melts during cooling. Both these findings have implications for the required extrusion temperatures and bonding between layers. Mechanical tests showed that the fillers generally not only made the polymer stiffer but more brittle in proportion to the filler fractions. Furthermore, the elastic moduli of scaffolds did not directly correlate with the corresponding bulk material properties, implying composite-specific AM processing effects on the mechanical properties. Finally, we show computational models to predict multimaterial scaffold elastic moduli using measured single material scaffold and bulk moduli. The reported characterizations are essential for assessing the AM processability and ultimately the suitability of the manufactured scaffolds for the envisioned bone regeneration application.The work was supported by a Horizon 2020 Research and Innovation Programme grant from the European Union, called the FAST project (grant no. 685825, project website: http:// project-fast.eu). The authors acknowledge the support of the FAST project consortium for the various aspects of this wor

    A rheological phase diagram of additives for cement formulations

    No full text
    A detailed rheological study of aqueous solutions of methylhydroxyethylcellulose has been carried out in the presence of different acrylate-based graft polymer used as additive contents. Both polymer components are used in cement formulations to improve the flow performances of the concretes, but no physicochemical studies can be easily found in the literature. The content of the graft polymer has been varied between 0.1 and 2.7 wt% in an aqueous solution with a fixed content of 6.5 wt% of methylhydroxyethylcellulose. Creep curves were performed at different stresses in order to build up the flow curves for the various solutions. We found that the addition of the graft polymer triggers a phase transition, which is made more dramatic by the presence of an external flow. A "flow-phase diagram" has been obtained, which could be used as a guide for determining the critical conditions for the onset of the flow-induced instability

    The Rheology of PEOT/PBT Block Copolymers in the Melt State and in the Thermally-Induced Sol/Gel Transition. Implications on the 3D-Printing Bio-Scaffold Process

    Get PDF
    Poly(ethyleneoxideterephthalate)/poly(butyleneterephthalate) (PEOT/PBT) segmented block copolymers are widely used for the manufacturing of 3D-printed bio-scaffolds, due to a combination of several properties, such as cell viability, bio-compatibility, and bio-degradability. Furthermore, they are characterized by a relatively low viscosity at high temperatures, which is desired during the injection stages of the printing process. At the same time, the microphase separated morphology generated by the demixing of hard and soft segments at intermediate temperatures allows for a quick transition from a liquid-like to a solid-like behavior, thus favoring the shaping and the dimensional stability of the scaffold. In this work, for the first time, the rheology of a commercial PEOT/PBT material is studied over a wide range of temperatures encompassing both the melt state and the phase transition regime. Non-isothermal viscoelastic measurements under oscillatory shear flow allow for a quantitative determination of the material processability in the melt state. Additionally, isothermal experiments below the order–disorder temperature are used to determine the temperature dependence of the phase transition kinetics. The importance of the rheological characterization when designing the 3D-printing scaffold process is also discussed

    On the Use of the Coaxial Cylinders Equivalence for the Measurement of Viscosity in Complex Non-Viscometric, Rotational Geometries

    No full text
    The rheology of macroscopic particle suspensions is relevant in many industrial applications, such as cement-based suspensions, synthetic and natural drilling fluids. Rheological measurements for these complex, heterogeneous systems are complicated by a double effect of particle size. On the one hand, the smallest characteristic length of the measuring geometry must be larger than the particle size. On the other hand, large particles are prone to sediment, thus calling for the use of rotational tools that are able to keep the suspension as homogeneous as possible. As a consequence, standard viscometric rotational rheometry cannot be used and complex flow geometries are to be implemented. In this way, however, the flow becomes non-viscometric, thus requiring the development of approximate methods to translate the torque vs. rotation speed raw data, which constitute the rheometer output, into viscosity vs. shear rate curves. In this work the Couette analogy methodology is used to establish the above equivalence in the case of two complex, commercial geometries, namely, a double helical ribbon tool and a square-shaped stirrer, which are recommended for the study of relatively large size suspensions. The methodology is based on the concept of the reduction of the complex geometry to an equivalent coaxial cylinder geometry, thus determining a quantitative correspondence between the non-standard situation and the well-known Couette-like conditions. The Couette analogy has been used first to determine the calibration constants of the non-standard geometry by using a Newtonian oil of known viscosity. The constants have been subsequently used to determine the viscosity curves of two non-Newtonian, shear thinning fluids, namely a homogeneous polymer solution and two heterogeneous concentrated suspensions. The results show that the procedure yields a good agreement between the viscosity curves obtained by the reduction method and those measured by a standard viscometric Couette geometry. The calibration constants obtained in this work from the coaxial cylinder analogy are also compared with those provided by the manufacturer, indicating that the calibration can improve the accuracy of the rheometer output

    Rheology-sensitive response of zeolite-supported anti-inflammatory drug systems

    No full text
    Drug release from inorganic supports is a challenge for the scientific community for various reasons, related to the low costs of the systems and the possibility of easily regulating the drug release. In the present work, surface-modified zeolite particles are used as carriers for non steroidal antiflammatory drugs (NSAIDs). The release of the drug has been studied in a solution that simulates the intestinal fluid as well as in a gel-like system, based on a surfactant and a binding salt. In the solution case, the quantity of drug released has been tracked via spectrophotometric assay. Release in the gel has been monitored by rheological methods. The molecular conformation of the NSAIDs is fundamental for the interaction with the zeolite surface, whose modified surface has a strong binding energy. It has been proven that the main mechanism for the drug release is anion exchange. It has been found that the NSAIDs, used in their sodic form, can act as binding salts by themselves in the gel-like system, thus changing the viscoelastic response of the overall solution. Drug release kinetics in the solution compare quantitatively well with the released drug in the gel-like fluid, as measured by rheometr
    corecore