8 research outputs found

    Calculation of concentration of aerosol particles around a slot sampler

    Get PDF
    A mathematical model and numerical procedure are proposed for investigation of aspiration efficiency and the particle concentration field around a slot sampler in a moving gas. A potential-flow model for the carrier gas and a Lagrangian method for calculation of particle trajectories and concentration are employed. The particle concentration patterns around the slot and at the sampler inlet are studied. The dependence of the aspiration efficiency on the ratio of the wind and sampling velocities is analyzed. It is shown that the local aspiration efficiency calculated on the symmetry axis of the slot gives satisfactory approximation for the integral aspiration efficiency. © 2007 Elsevier Ltd. All rights reserved

    Aerosol aspiration into a cylindrical sampler from a low-velocity downward flow and from calm air

    Get PDF
    The problem of aerosol aspiration into a two-dimensional cylindrical sampler from a low-velocity downward flow and from calm air is solved. A simple analytical model for the velocity field of the carrier medium in the vicinity of the sampler with allowance for the finite size of the input orifice is proposed. Parametric studies of the aspiration factor as a function of the Stokes number for different ratios of the free-stream and aspiration velocities and different gravity-induced sedimentation velocities for two positions of the sampler are performed. Sedimentation of particles on the lower side of the cylinder for the sampler with a downward-oriented orifice is discussed. © 2005 Springer Science+Business Media, Inc

    Calculation of concentration of aerosol particles around a slot sampler

    No full text
    A mathematical model and numerical procedure are proposed for investigation of aspiration efficiency and the particle concentration field around a slot sampler in a moving gas. A potential-flow model for the carrier gas and a Lagrangian method for calculation of particle trajectories and concentration are employed. The particle concentration patterns around the slot and at the sampler inlet are studied. The dependence of the aspiration efficiency on the ratio of the wind and sampling velocities is analyzed. It is shown that the local aspiration efficiency calculated on the symmetry axis of the slot gives satisfactory approximation for the integral aspiration efficiency. © 2007 Elsevier Ltd. All rights reserved

    Aerosol aspiration into a cylindrical sampler from a low-velocity downward flow and from calm air

    No full text
    The problem of aerosol aspiration into a two-dimensional cylindrical sampler from a low-velocity downward flow and from calm air is solved. A simple analytical model for the velocity field of the carrier medium in the vicinity of the sampler with allowance for the finite size of the input orifice is proposed. Parametric studies of the aspiration factor as a function of the Stokes number for different ratios of the free-stream and aspiration velocities and different gravity-induced sedimentation velocities for two positions of the sampler are performed. Sedimentation of particles on the lower side of the cylinder for the sampler with a downward-oriented orifice is discussed. © 2005 Springer Science+Business Media, Inc

    Calculation of concentration of aerosol particles around a slot sampler

    Get PDF
    A mathematical model and numerical procedure are proposed for investigation of aspiration efficiency and the particle concentration field around a slot sampler in a moving gas. A potential-flow model for the carrier gas and a Lagrangian method for calculation of particle trajectories and concentration are employed. The particle concentration patterns around the slot and at the sampler inlet are studied. The dependence of the aspiration efficiency on the ratio of the wind and sampling velocities is analyzed. It is shown that the local aspiration efficiency calculated on the symmetry axis of the slot gives satisfactory approximation for the integral aspiration efficiency. © 2007 Elsevier Ltd. All rights reserved

    Aerosol aspiration into a cylindrical sampler from a low-velocity downward flow and from calm air

    No full text
    The problem of aerosol aspiration into a two-dimensional cylindrical sampler from a low-velocity downward flow and from calm air is solved. A simple analytical model for the velocity field of the carrier medium in the vicinity of the sampler with allowance for the finite size of the input orifice is proposed. Parametric studies of the aspiration factor as a function of the Stokes number for different ratios of the free-stream and aspiration velocities and different gravity-induced sedimentation velocities for two positions of the sampler are performed. Sedimentation of particles on the lower side of the cylinder for the sampler with a downward-oriented orifice is discussed. © 2005 Springer Science+Business Media, Inc

    Aerosol aspiration into a cylindrical sampler from a low-velocity downward flow and from calm air

    No full text
    The problem of aerosol aspiration into a two-dimensional cylindrical sampler from a low-velocity downward flow and from calm air is solved. A simple analytical model for the velocity field of the carrier medium in the vicinity of the sampler with allowance for the finite size of the input orifice is proposed. Parametric studies of the aspiration factor as a function of the Stokes number for different ratios of the free-stream and aspiration velocities and different gravity-induced sedimentation velocities for two positions of the sampler are performed. Sedimentation of particles on the lower side of the cylinder for the sampler with a downward-oriented orifice is discussed. © 2005 Springer Science+Business Media, Inc

    Calculation of concentration of aerosol particles around a slot sampler

    No full text
    A mathematical model and numerical procedure are proposed for investigation of aspiration efficiency and the particle concentration field around a slot sampler in a moving gas. A potential-flow model for the carrier gas and a Lagrangian method for calculation of particle trajectories and concentration are employed. The particle concentration patterns around the slot and at the sampler inlet are studied. The dependence of the aspiration efficiency on the ratio of the wind and sampling velocities is analyzed. It is shown that the local aspiration efficiency calculated on the symmetry axis of the slot gives satisfactory approximation for the integral aspiration efficiency. © 2007 Elsevier Ltd. All rights reserved
    corecore