29 research outputs found
Crustal evolution inferred from Apollo magnetic measurements
Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments
Spectrum of turbulent Kelvin-waves cascade in superfluid helium
To explain the observed decay of superfluid turbulence at very low
temperature, it has been proposed that a cascade of Kelvin waves (analogous to
the classical Kolmogorov cascade) transfers kinetic energy to length scales
which are small enough that sound can be radiated away. We report results of
numerical simulations of the interaction of quantized vortex filaments. We
observe the development of the Kelvin-waves cascade, and compute the statistics
of the curvature, the amplitude spectrum (which we compare with competing
theories) and the fractal dimension.Comment: 32 pages, 22 figure
Renormalization group in the infinite-dimensional turbulence: third-order results
The field theoretic renormalization group is applied to the stochastic
Navier-Stokes equation with the stirring force correlator of the form
k^(4-d-2\epsilon) in the d-dimensional space, in connection with the problem of
construction of the 1/d expansion for the fully developed fluid turbulence
beyond the scope of the standard epsilon expansion. It is shown that in the
large-d limit the number of the Feynman diagrams for the Green function (linear
response function) decreases drastically, and the technique of their analytical
calculation is developed. The main ingredients of the renormalization group
approach -- the renormalization constant, beta function and the ultraviolet
correction exponent omega, are calculated to order epsilon^3 (three-loop
approximation). The two-point velocity-velocity correlation function, the
Kolmogorov constant C_K in the spectrum of turbulent energy and the
inertial-range skewness factor S are calculated in the large-d limit to third
order of the epsilon expansion. Surprisingly enough, our results for C_K are in
a reasonable agreement with the existing experimental estimates.Comment: 30 pages with EPS figure