8 research outputs found

    Strainrange partitioning behavior of an automotive turbine alloy

    Get PDF
    This report addresses Strainrange Partitioning, an advanced life prediction analysis procedure, as applied to CA-101 (cast IN 792 + Hf), an alloy proposed for turbine disks in automotive gas turbine engines. The methodology was successful in predicting specimen life under thermal-mechanical cycling, to within a factor of + or - 2

    Mechanical properties of several nickel alloys in hydrogen at elevated temperatures

    Get PDF
    Tests were performed to determine low cycle fatigue and crack growth rate properties of one iron-base and two forms of one cast nickel-base alloy. The alloys were tested in various forms and/or heat-treat conditions that are proposed for use in a high-pressure hydrogen or a hydrogen-water vapor environment. Some general conclusions can be made comparing the results of tests in a hydrogen environment with those in a hydrogen-water vapor environment. The hydrogen-water vapor environment caused a 50 percent average reduction in fatigue life, indicating extreme degradation when compared with tests conducted in air, for Incoloy 903 at 1033 K (1400 F). Crack growth rates increased significantly for all materials with increasing test temperature. A very significant increase (three orders of magnitude) in crack growth rate occurred for Incoloy 903 tested in the hydrogen-water vapor environment when compared with testing done in hydrogen along at 922 K (1200 F)

    Engine Component Retirement-For-Cause: A Nondestructive Evaluation (NDE) and Fracture Mechanics Based Maintainance Concep

    Get PDF
    Historically, cyclic life limited gas turbine engine components have been retired when they reach an analytically determined life where the first fatigue crack per 1000 parts could be expected. By definition, 99.9% of these components are being retired prematurely as they have considerable useful life remaining. Retirement for Cause is a procedure which would allow safe utilization of the full life capacity of each individual component. Since gas turbine engine rotor components are prime candidates and are among the most costly of engine components, adoption of a RFC maintenance philosophy could result in substantial engine systems life cycle cost savings. Two major technical disciplines must be developed and integrated to realize those cost savings: Fracture Mechanics and Nondestructive Evaluation. This paper discusses the methodology, and development activity required, to integrate these disciplines to provide a viable RFC system for use on military gas turbine engines, and illustrates potential benefits of its application

    Engine Component Retirement-For-Cause: A Nondestructive Evaluation (NDE) and Fracture Mechanics Based Maintainance Concep

    Get PDF
    Historically, cyclic life limited gas turbine engine components have been retired when they reach an analytically determined life where the first fatigue crack per 1000 parts could be expected. By definition, 99.9% of these components are being retired prematurely as they have considerable useful life remaining. Retirement for Cause is a procedure which would allow safe utilization of the full life capacity of each individual component. Since gas turbine engine rotor components are prime candidates and are among the most costly of engine components, adoption of a RFC maintenance philosophy could result in substantial engine systems life cycle cost savings. Two major technical disciplines must be developed and integrated to realize those cost savings: Fracture Mechanics and Nondestructive Evaluation. This paper discusses the methodology, and development activity required, to integrate these disciplines to provide a viable RFC system for use on military gas turbine engines, and illustrates potential benefits of its application.</p

    Engine Component Retirement-For-Cause: A Nondestructive Evaluation (NDE) and Fracture Mechanics Based Maintainance Concep

    No full text
    Historically, cyclic life limited gas turbine engine components have been retired when they reach an analytically determined life where the first fatigue crack per 1000 parts could be expected. By definition, 99.9% of these components are being retired prematurely as they have considerable useful life remaining. Retirement for Cause is a procedure which would allow safe utilization of the full life capacity of each individual component. Since gas turbine engine rotor components are prime candidates and are among the most costly of engine components, adoption of a RFC maintenance philosophy could result in substantial engine systems life cycle cost savings. Two major technical disciplines must be developed and integrated to realize those cost savings: Fracture Mechanics and Nondestructive Evaluation. This paper discusses the methodology, and development activity required, to integrate these disciplines to provide a viable RFC system for use on military gas turbine engines, and illustrates potential benefits of its application.</p

    Probabilistic Consequences of Imperfect NDE

    Get PDF
    This paper presents results of Monte Carlo simulation of the Retirement-for-Cause (RFC) engine maintenance system as developed by Pratt and Whitney Aircraft and the U. S. Air Force. The Retirement-for-Cause concept is addressed, conventional Monte Carlo modeling techniques are explained, and an alternative approach developed at Pratt and Whitney is presented. Next, a simplified non-ideal Non-Destructive-Evaluation (NDE) model with fixed probabilities of Type I and Type II errors is described and simulation results obtained using this model are presented and discussed. An appendix presents a survey of various methods used to model NDE.</p
    corecore