47 research outputs found

    Passage of inhaled particles into the blood circulation in humans

    Get PDF
    BACKGROUND: Pollution by particulates has been consistently associated with increased cardiovascular morbidity and mortality. However, the mechanisms responsible for these effects are not well-elucidated. METHODS AND RESULTS: To assess to what extent and how rapidly inhaled pollutant particles pass into the systemic circulation, we measured, in 5 healthy volunteers, the distribution of radioactivity after the inhalation of "Technegas," an aerosol consisting mainly of ultrafine (99m)Technetium-labeled carbon particles (<100 nm). Radioactivity was detected in blood already at 1 minute, reached a maximum between 10 and 20 minutes, and remained at this level up to 60 minutes. Thin layer chromatography of blood showed that in addition to a species corresponding to oxidized (99m)Tc, ie, pertechnetate, there was also a species corresponding to particle-bound (99m)Tc. Gamma camera images showed substantial radioactivity over the liver and other areas of the body. CONCLUSIONS: We conclude that inhaled (99m)Tc-labeled ultrafine carbon particles pass rapidly into the systemic circulation, and this process could account for the well-established, but poorly understood, extrapulmonary effects of air pollution.status: publishe

    The role of FDG-PET in distinguishing between septic and aseptic loosening in hip prosthesis: a review of literature

    No full text
    Infection in prosthesis surgery is very dangerous because it changes the patient’s prognosis. Differential diagnosis between septic and aseptic loosening is fundamental in order to apply the correct treatment. The correct diagnostic approach is still debated in literature. The aim of this study was to perform a review of literature evaluating positron emission tomography (PET) capacity to distinguish between septic and aseptic loosening in hip prosthesis. Research was done principally among medical archives. Five studies were selected which satisfied the required characteristics, and a weighted average of sensitivity and specificity of the different studies was determined. The fluorodeoxyglucose positron emission tomography (FDG-PET) sensitivity in individuating hip prosthesis infections was 82.8% and specificity was 87.3%. Positron emission tomography based on 2-fluoro-2-deoxy-D-glucose could be a valid option if research is able to find an uptake pattern specific for septic and aseptic loosening
    corecore