11 research outputs found

    Very late-onset friedreich ataxia with laryngeal dystonia

    Get PDF
    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder characterized by progressive gait and limb ataxia, cerebellar, pyramidal and dorsal column involvement, visual defects, scoliosis, pes cavus and cardiomyopathy. It is caused by a homozygous guanine-adenine-adenine (GAA) trinucleotide repeat expansion in intron 1 of the frataxin gene (FXN) on chromosome 9q13-q21.1. Onset is usually in the first or second decade of life; however, late-onset cases of Freidreich ataxia (LOFA), after the age of 25 years, and very late-onset cases of Freidreich ataxia (VLOFA), after the age of 40 years, have been reported. VLOFA is quite rare and usually presents a milder progression of the disease. We report the case of a 64-year-old woman affected with VLOFA whose first symptoms (balance and gait disturbances) occurred at the age of 44 years. At the age of 62 years, she started complaining of a slowly progressive dysphonia showing the clinical aspects of laryngeal dystonia. Molecular analysis showed a 210- and 230-trinucleotide GAA repeat expansion in the two alleles of the FXN gene. Laryngeal dystonia has been reported only in very few cases of ataxia syndrome and never before in FRDA patients. It may represent a rare clinical manifestation of VLOFA thus confirming the high variability of the clinical spectrum of FRDA

    Cdc7 kinase inhibitors:Pyrrolopyridinones as potential antitumor agents. 1. Synthesis and structure-activity relationships

    No full text
    Cdc7 kinase is an essential protein that promotes DNA replication in eukaryotic organisms. Genetic evidence indicates that Cdc7 inhibition can cause selective tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 small-molecule inhibitors for the treatment of cancers. In this paper, the synthesis and structure-activity relationships of 2-heteroaryl-pyrrolopyridinones, the first potent Cdc7 kinase inhibitors, are described. Starting from 2-pyridin-4-yl-1,5,6,7-tetrahydro-pyrrolo[3,2-c] pyridin-4-one, progress toward a simple scaffold, tailored for Cdc7 inhibition, is reported.</p

    First Cdc7 kinase inhibitors:Pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery

    No full text
    Cdc7 kinase is a key regulator of the S-phase of the cell cycle, known to promote the activation of DNA replication origins in eukaryotic organisms. Cdc7 inhibition can cause tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 inhibitors for the treatment of cancer. In this paper, we conclude the structure-activity relationships study of the 2-heteroaryl-pyrrolopyridinone class of compounds that display potent inhibitory activity against Cdc7 kinase. Furthermore, we also describe the discovery of 89S,[(S)-2-(2-aminopyrimidin-4-yl)-7-(2-fluoro-ethyl)-1,5,6,7- tetrahydropyrrolo[3,2-c]pyridin- 4-one], as a potent ATP mimetic inhibitor of Cdc7. Compound 89S has a Ki value of 0.5 nM, inhibits cell proliferation of different tumor cell lines with an IC50 in the submicromolar range, and exhibits in vivo tumor growth inhibition of 68% in the A2780 xenograft model.</p

    Cdc7 kinase inhibitors:5-heteroaryl-3-carboxamido-2-aryl pyrroles as potential antitumor agents. 1. Lead finding

    No full text
    Cdc7 serine/threonine kinase is a key regulator of DNA synthesis in eukaryotic organisms. Cdc7 inhibition through siRNA or prototype small molecules causes p53 independent apoptosis in tumor cells while reversibly arresting cell cycle progression in primary fibroblasts. This implies that Cdc7 kinase could be considered a potential target for anticancer therapy. We previously reported that pyrrolopyridinones (e.g., 1) are potent and selective inhibitors of Cdc7 kinase, with good cellular potency and in vitro ADME properties but with suboptimal pharmacokinetic profiles. Here we report on a new chemical class of 5-heteroaryl-3-carboxamido-2-substituted pyrroles (1A) that offers advantages of chemistry diversification and synthetic simplification. This work led to the identification of compound 18, with biochemical data and ADME profile similar to those of compound 1 but characterized by superior efficacy in an in vivo model. Derivative 18 represents a new lead compound worthy of further investigation toward the ultimate goal of identifying a clinical candidate.</p

    Non-pharmacological control of plasma cholesterol levels

    No full text
    The importance of non-pharmacological control of plasma cholesterol levels in the population is increasing, along with the number of subjects whose plasma lipid levels are non-optimal, or frankly elevated, according to international guidelines. In this context, a panel of experts, organized and coordinated by the Nutrition Foundation of Italy, has evaluated the nutritional and lifestyle interventions to be adopted in the control of plasma cholesterol levels (and specifically of LDL cholesterol levels). This Consensus document summarizes the view of the panel on this topic, with the aim to provide an updated support to clinicians and other health professionals involved in cardiovascular prevention. (c) 2007 Elsevier B.V. All rights reserved
    corecore