3 research outputs found

    Intraoperative MRI for the microsurgical resection of meningiomas close to eloquent areas or dural sinuses: patient series

    Get PDF
    BACKGROUND: Meningiomas are the most commonly encountered nonglial primary intracranial tumors. The authors report on the usefulness of intraoperative magnetic resonance imaging (iMRI) during microsurgical resection of meningiomas located close to eloquent areas or dural sinuses and on the feasibility of further radiation therapy. OBSERVATIONS: Six patients benefited from this approach. The mean follow-up period after surgery was 3.3 (median 3.2, range 2.1–4.6) years. Five patients had no postoperative neurological deficit, of whom two with preoperative motor deficit completely recovered. One patient with preoperative left inferior limb deficit partially recovered. The mean interval between surgery and radiation therapy was 15.8 (median 16.9, range 1.4–40.5) months. Additional radiation therapy was required in five cases after surgery. The mean preoperative tumor volume was 38.7 (median 27.5, range 8.6–75.6) mL. The mean postoperative tumor volume was 1.2 (median 0.8, range 0–4.3) mL. At the last follow-up, all tumors were controlled. LESSONS: The use of iMRI was particularly helpful to (1) decide on additional tumor resection according to iMRI findings during the surgical procedure; (2) evaluate the residual tumor volume at the end of the surgery; and (3) judge the need for further radiation and, in particular, the feasibility of single-fraction radiosurgery

    CNS tumors with PLAGL1-fusion: beyond ZFTA and YAP1 in the genetic spectrum of supratentorial ependymomas

    No full text
    International audienceA novel methylation class, “neuroepithelial tumor, with PLAGL1 fusion” (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation . Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1 -fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non- ZFTA/ non -YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as “mixed subependymomas-ependymomas” with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1 : FOXO1, EWSR1 and for the first time MAML2 . The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1 -fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non- ZFTA/ non -YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH
    corecore