5 research outputs found

    Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny and cell cycle progression in the pennate diatom <i>Seminavis robusta</i>

    Get PDF
    Despite the growing interest in diatom genomics, detailed time series of gene expression in relation to key cellular processes are still lacking. Here, we investigated the relationships between the cell cycle and chloroplast development in the pennate diatom Seminavis robusta. This diatom possesses two chloroplasts with a well-orchestrated developmental cycle, common to many pennate diatoms. By assessing the effects of induced cell cycle arrest with microscopy and flow cytometry, we found that division and reorganization of the chloroplasts are initiated only after S-phase progression. Next, we quantified the expression of the S. robusta FtsZ homolog to address the division status of chloroplasts during synchronized growth and monitored microscopically their dynamics in relation to nuclear division and silicon deposition. We show that chloroplasts divide and relocate during the S/G2 phase, after which a girdle band is deposited to accommodate cell growth. Synchronized cultures of two genotypes were subsequently used for a cDNA-amplified fragment length polymorphism-based genome-wide transcript profiling, in which 917 reproducibly modulated transcripts were identified. We observed that genes involved in pigment biosynthesis and coding for light-harvesting proteins were up-regulated during G2/M phase and cell separation. Light and cell cycle progression were both found to affect fucoxanthin-chlorophyll a/c-binding protein expression and accumulation of fucoxanthin cell content. Because chloroplasts elongate at the stage of cytokinesis, cell cycle-modulated photosynthetic gene expression and synthesis of pigments in concert with cell division might balance chloroplast growth, which confirms that chloroplast biogenesis in S. robusta is tightly regulated

    Sexual reproduction, mating system, chloroplast dynamics and abrupt cell size reduction in <i>Pseudo-nitzschia pungens</i> from the North Sea (Bacillariophyta)

    No full text
    Clonal cultures of Pseudo-nitzschia pungens were isolated at various times from seven sites in the North Sea. During the mitotic cell cycle, the two plate-shaped chloroplasts were girdle-appressed during interphase and mitosis. After cytokinesis, the chloroplasts moved onto the parental valve and remained there during the formation of the new hypovalve and until separation and re-arrangement of the sibling cells within the cell chain had been completed. Clones were almost always heterothallic and cultures of opposite mating type isolated from different localities were compatible. Meiosis I was cytokinetic and accompanied by chloroplast division. Meiosis II involved karyokinesis but not cytokinesis and preceded the rearrangement and contraction of the two gametes. Sexual reproduction involved physiological anisogamy. With one exception, gamete behaviour was clone-specific, gametes being active in clones of one mating type but passive in clones of the other mating type. Auxospore development was accompanied by deposition of a transverse and then a longitudinal perizonium. Infrequently, triploid auxospores and presumably haploid auxospores were produced. The four chloroplasts of diploid auxospores did not divide, and behaved synchronously during the two acytokinetic mitotic cycles accompanying the deposition of the initial thecae. Just before the first division of the initial cell, the chloroplasts shifted onto the valves ( two per valve). The division of the initial cell was not accompanied by chloroplast division and so the two daughter cells received two chloroplasts each. Two modes of abrupt cell size reduction were detected. One occurred during initial cell formation when part of the expanded auxospore aborted. The other pattern was more gradual and was observed in growing cultures; during successive cell divisions a frustule constriction appeared and intensified, one chloroplast split into two, and part of the protoplast aborted. A simple naming system is proposed for mating types in pennate diatoms

    Cell Wall Evolution and Diversity

    No full text
    corecore