15 research outputs found
HPRTSardinia: a new point mutation causing HPRT deficiency without Lesch–Nyhan disease
AbstractHypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch–Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch–Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C→T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRTSardinia. The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency
NUOVA TERAPIA PER IL TRATTAMENTO DELL'IPERURICEMIA NELLA SINDROME DI LESCH-NYHAN
La presente invenzione si riferisce all’uso di composti noti per il trattamento
farmacologico delle condizioni di iperuricemia associate a una malattia genetica rara, la
sindrome di Lesch-Nyhan
Low levels of mycophenolic acid induce differentiation of human neuroblastoma cell lines
[No abstract available
Inborn Errors of Purine Salvage and Catabolism
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all
Guanine nucleotide depletion triggers cell cycle arrest and apoptosis in human neuroblastoma cell lines
Mycophenolic acid (MPA) specifically inhibits inosine-5'-monophosphate dehydrogenase, the first committed step toward GMP biosynthesis. In its morpholinoethyl ester prodrug form it is one of the most promising immunosuppressive drugs recently developed. The aim of the present study was to investigate the in vitro effects of MPA, at concentrations readily attainable during immunosuppressive therapy, on 3 human neuroblastoma cell lines (LAN5, SHEP and IMR32). Mycophenolic acid (0.1-10 muM) caused a decrease of intracellular levels of guanine nucleotides, a G(1) arrest and a time- and dose-dependent death by apoptosis. These effects, associated with an up-regulation of p53, p21 and bax, a shuttling of p53 protein into the nucleus and a down-regulation of bcl-2, survivin and p27 protein, were reversed by the simultaneous addition of guanine or guanosine and were more evident using nondialysed serum containing hypoxanthine. These results suggest that in neuroblastoma cell lines clinically attainable concentrations of mycophenolic acid deplete guanine nucleotide pools triggering G(1) arrest and apoptosis through p53-mediated pathways, indicating a potential role of its morpholinoethyl ester pro-drug in the management of patients with neuroectodermal tumors. (C) 2003 Wiley-Liss, Inc