4 research outputs found

    Differences between recalculated and original Dobson total ozone data from Hradec Kralove, Czechoslovakia, 1962-1990

    Get PDF
    Backward reevaluation of long-term total ozone measurements from the Solar and Ozone Observatory of Czech Hydrometeorological Institute at Hradec Kralove, Czechoslovakia, was performed for the period 1962-1990. The homogenization was carried out with respect to the calibration level of the World Primary Standard Spectrophotometer No. 83 - WPSS by means of day-by-day recalculations of more than 25,000 individual measurements using the R-N tables reconstructed after international comparisons and regular standard lamp tests of the Dobson spectrophotometer No. 74. The results showed significant differences among the recalculated data and those original ones published in the bulletins Ozone Data for the World. In the period 1962-1979 they reached 10-19 D.U. (3.0-5.5%) for annual averages and even 26 D.U. (7.0%) for monthly averages of total ozone. Such differences exceed several times accuracy of measuring and can significantly influence character of trends of total ozone in Central Europe. Therefore the results from Hradec Kralove support the calls for reevaluation of all historical Dobson total ozone data sets at individual stations of Global Ozone Observing System

    Comparison of recalculated Dobson and TOMS total ozone at Hradec Kralove, Czechoslovakia, 1978-1990

    Get PDF
    The reevaluated Dobson total ozone data from Hradec Kralove, Czechoslovakia were compared with independent Total Ozone Mapping Spectrophotometer (TOMS) 'version 6' data set. The comparison was performed by means of the parallel daily averages of ground-based and satellite total ozone pairs of the period November 1978 to December 1990. The comparison showed slight differences between both data series. Their average relative difference is 0.48 percent. The similar results have been reached for subsets of direct sun and zenith types of measurements as well. Their relative differences are 0.61 percent and 0.11 percent respectively. These facts indicate not only good mutual relation of both data sources but also reliability and accuracy of the zenith charts of the spectrophotometer No. 74 used at Hradec Kralove. Preliminary assessment of seasonal MU-dependence of the differences between Dobson and TOMS data was made while using total ozones of winter and summer months representing values of MU=2.70-5.20 and MU = 1.12-1.30 respectively. The results did not show systematic underestimation or overestimation of total ozone due to MU-dependence of the instrument at Hradec Kralove in both seasons

    Comparison of measured and modelled uv indices for the assessment of health risks

    Get PDF
    The World Health Organisation (WHO) and the World Meteorological Organisation (WMO) have jointly recommended that the UV Index (UVI) should be used to inform the public about possible health risks due to overexposure to solar radiation, especially skin damage. To test the current operational status of measuring and modelling techniques used in providing the public with UVI information, this article compares cloudless sky UVIs (measured using five instruments at four locations with different latitudes and climate) with the results of 13 models used in UVI forecasting schemes. For the models, only location, total ozone and solar zenith angle were provided as input parameters. In many cases the agreement is acceptable, i.e. less than 0.5 UVI. Larger differences may originate from instrumental errors and shortcomings in the models and their input parameters. A possible explanation for the differences between models is the treatment of the unknown input parameters, especially aerosols

    Extreme events in total ozone over the Northern mid-latitudes: an analysis based on long-term data sets from five European ground-based stations

    Get PDF
    We apply methods from extreme value theory to identify extreme events in high (termed EHOs) and low (termed ELOs) total ozone and to describe the distribution tails (i.e. very high and very low values) of five long-term European ground-based total ozone time series. The influence of these extreme events on observed mean values, long-term trends and changes is analysed. The results show a decrease in EHOs and an increase in ELOs during the last decades, and establish that the observed downward trend in column ozone during the 1970-1990s is strongly dominated by changes in the frequency of extreme events. Furthermore, it is shown that clear 'fingerprints' of atmospheric dynamics (NAO, ENSO) and chemistry [ozone depleting substances (ODSs), polar vortex ozone loss] can be found in the frequency distribution of ozone extremes, even if no attribution is possible from standard metrics (e.g. annual mean values). The analysis complements earlier analysis for the world's longest total ozone record at Arosa, Switzerland, confirming and revealing the strong influence of atmospheric dynamics on observed ozone changes. The results provide clear evidence that in addition to ODS, volcanic eruptions and strong/moderate ENSO and NAO events had significant influence on column ozone in the European sector
    corecore