8 research outputs found

    TARP as antigen in cancer immunotherapy

    No full text
    In recent decades, immunotherapy has become a pivotal element in cancer treatment. A remaining challenge is the identification of cancer-associated antigens suitable as targets for immunotherapeutics with potent on-target and few off-tumor effects. The T-cell receptor gamma (TCRÎł) chain alternate reading frame protein (TARP) was first discovered in the human prostate and androgen-sensitive prostate cancer. Thereafter, TARP was also identified in breast and endometrial cancers, salivary gland tumors, and pediatric and adult acute myeloid leukemia. Interestingly, TARP promotes tumor cell proliferation and migration, which is reflected in an association with worse survival. TARP expression in malignant cells, its role in oncogenesis, and its limited expression in normal tissues raised interest in its potential utility as a therapeutic target, and led to development of immunotherapeutic targeting strategies. In this review, we provide an overview of TARP expression, its role in different cancer types, and currently investigated TARP-directed immunotherapeutic options

    Whole genome sequencing and inheritance-based variant filtering as a tool for unraveling missing heritability in pediatric cancer

    No full text
    Survival rates for pediatric cancer have significantly increased the past decades, now exceeding 70-80% for most cancer types. The cause of cancer in children and adolescents remains largely unknown and a genetic susceptibility is considered in up to 10% of the cases, but most likely this is an underestimation. Families with multiple pediatric cancer patients are rare and strongly suggestive for an underlying predisposition to cancer. The absence of identifiable mutations in known cancer predisposing genes in such families could indicate undiscovered heritability. To discover candidate susceptibility variants, whole genome sequencing was performed on germline DNA of a family with two children affected by Burkitt lymphoma. Using an inheritance-based filtering approach, 18 correctly segregating coding variants were prioritized without a biased focus on specific genes or variants. Two variants in FAT4 and DCHS2 were highlighted, both involved in the Hippo signaling pathway, which controls tissue growth and stem cell activity. Similarly, a set of nine non-coding variants was prioritized, which might contribute, in differing degrees, to the increased cancer risk within this family. In conclusion, inheritance-based whole genome sequencing in selected families or cases is a valuable approach to prioritize variants and, thus, to further unravel genetic predisposition in childhood cancer

    CAR-T in the Treatment of Acute Myeloid Leukemia: Barriers and How to Overcome Them

    No full text
    Conventional therapies for acute myeloid leukemia (AML) are characterized by high rates of relapse, severe toxicities, and poor overall survival rates. Thus, the development of new therapeutic strategies is crucial for improving the survival and quality of life of AML patients. CD19-directed chimeric antigen receptor (CAR) T-cell immunotherapy has been extremely successful in the treatment of B-cell acute lymphoid leukemia and several mature B-cell lymphomas. However, the use of CAR T-cell therapy for AML is currently prevented due to the lack of a myeloid equivalent to CD19, as currently known cell surface targets on leukemic blasts are also expressed on healthy hematopoietic stem and progenitor cells as well as their progeny. In addition, the immunosuppressive tumor microenvironment has a dampening effect on the antitumor activity of CAR-T cells. Here, we review the therapeutic challenges limiting the use of CAR T-cell therapy for AML and discuss promising novel strategies to overcome them

    Deciphering the non-coding landscape of pediatric acute myeloid leukemia

    No full text
    Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20–30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30,168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies

    Deciphering the Non-Coding RNA Landscape of Pediatric Acute Myeloid Leukemia

    Full text link
    Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20–30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre-ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies
    corecore