50 research outputs found

    Microbial carbonate precipitation for the improvement of quality of recycled aggregates

    No full text
    High water absorption is the main drawback of recycled aggregates which greatly hinders the re-use of them in concrete production. In this study, bio-deposition treatment, based on bacterially induced CaCO3 precipitation, was applied to improve the quality of the recycled aggregates. Two representative recycled aggregates, recycled concrete aggregates (CA) and mixed aggregates (MA) were used. The bacterial CaCO3 precipitated on the surface and in the pores of the recycled aggregate worked as a barrier for the penetration of water, and hence the water absorption of the aggregates can be decreased. Firstly, the optimal treatment method was determined by screening among spraying and several immersion strategies. It was found that the two times immersion treatment was the best method. Samples subjected to this method had a high weight increase (2% for CA and 2.5% for MA) and largest extent of water absorption decrease (one percentage point drop for CA and two percentage points drop for MA). Furthermore, The biogenic CaCO3 had a good cohesion and strong bond with the aggregate surface. Very limited (< 0.1%) mass loss occurred on the bio-treated samples while the mass loss of the untreated aggregates was much higher (0.2% for CA and 0.5% for MA). This indicated that the surface of the aggregates was strengthened by the biogenic CaCO3 as well. After using the bio-treated aggregates, the compressive strength was increased by 40% for CA concrete and 16% for MA; the water absorption was decreased by 27% for CA concrete and 20% for MA concrete. (C) 2017 Elsevier Ltd. All rights reserved

    Controlling the fatty acid hydroxylation regioselectivity of CYP152A1 (P450Bsb) by active site engineering

    Get PDF
    Regioselective hydroxylation on inactivated C-H bonds is among the dream reactions of organic chemists. Cytochrome P450 enzymes (CYPs) perform this reaction in general with high regio- and stereoselectivity (e.g. for steroids as substrates). Furthermore, enzyme engineering may allow to tune the regioselectivity of the enzyme. Regioselective in-chain hydroxylation of shorter or linear molecules (fatty acids), however, remains challenging even with this enzyme class, due to the high similarity of the substrate’s backbone carbons and their conformational flexibility. CYPs are well described for hydroxylating fatty acids selectively in the chemically more distinct a- or w-position. In contrast, selective in-chain hydroxylation of fatty acids lacks precedence. The peroxygenase CYP152A1 (P450Bsb) is a family member that displays fatty acid hydroxylation at both, the a- and b-position. Please click Additional Files below to see the full abstract

    Evaluatie van l-ribulose en l-erythrulose als chirale bouwstenen voor de totaalsynthese van natuurproducten

    No full text

    Total synthesis of (-)-neplanocin A from L-ribulose

    No full text
    (-)-Neplanocin A (9) has been synthesized from L-ribulose (1) in 14 steps and in 15 % overall yield. The key step involves an intramolecular nitrone [2 + 3] cycloaddition reaction
    corecore