156 research outputs found
The Connes-Lott program on the sphere
We describe the classical Schwinger model as a study of the projective
modules over the algebra of complex-valued functions on the sphere. On these
modules, classified by , we construct hermitian connections with
values in the universal differential envelope which leads us to the Schwinger
model on the sphere. The Connes-Lott program is then applied using the Hilbert
space of complexified inhomogeneous forms with its Atiyah-Kaehler structure. It
splits in two minimal left ideals of the Clifford algebra preserved by the
Dirac-Kaehler operator D=i(d-delta). The induced representation of the
universal differential envelope, in order to recover its differential
structure, is divided by the unwanted differential ideal and the obtained
quotient is the usual complexified de Rham exterior algebra over the sphere
with Clifford action on the "spinors" of the Hilbert space. The subsequent
steps of the Connes-Lott program allow to define a matter action, and the field
action is obtained using the Dixmier trace which reduces to the integral of the
curvature squared.Comment: 34 pages, Latex, submitted for publicatio
Connes-Lott model building on the two-sphere
In this work we examine generalized Connes-Lott models on the two-sphere. The
Hilbert space of the continuum spectral triple is taken as the space of
sections of a twisted spinor bundle, allowing for nontrivial topological
structure (magnetic monopoles). The finitely generated projective module over
the full algebra is also taken as topologically non-trivial, which is possible
over . We also construct a real spectral triple enlarging this Hilbert
space to include "particle" and "anti-particle" fields.Comment: 57 pages, LATE
Non-commutative Quantum Mechanics in Three Dimensions and Rotational Symmetry
We generalize the formulation of non-commutative quantum mechanics to three
dimensional non-commutative space. Particular attention is paid to the
identification of the quantum Hilbert space in which the physical states of the
system are to be represented, the construction of the representation of the
rotation group on this space, the deformation of the Leibnitz rule accompanying
this representation and the implied necessity of deforming the co-product to
restore the rotation symmetry automorphism. This also implies the breaking of
rotational invariance on the level of the Schroedinger action and equation as
well as the Hamiltonian, even for rotational invariant potentials. For
rotational invariant potentials the symmetry breaking results purely from the
deformation in the sense that the commutator of the Hamiltonian and angular
momentum is proportional to the deformation.Comment: 21 page
On Pythagoras' theorem for products of spectral triples
We discuss a version of Pythagoras theorem in noncommutative geometry. Usual
Pythagoras theorem can be formulated in terms of Connes' distance, between pure
states, in the product of commutative spectral triples. We investigate the
generalization to both non pure states and arbitrary spectral triples. We show
that Pythagoras theorem is replaced by some Pythagoras inequalities, that we
prove for the product of arbitrary (i.e. non-necessarily commutative) spectral
triples, assuming only some unitality condition. We show that these
inequalities are optimal, and provide non-unital counter-examples inspired by
K-homology.Comment: Paper slightly shortened to match the published version; Lett. Math.
Phys. 201
- …