23 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Estimating the Reduction in the Radiation Burden From Nuclear Cardiology Through Use of Stress-Only Imaging in the United States and Worldwide

    Get PDF
    Not availabl

    Comparison of Radiation Doses and Best-Practice Use for Myocardial Perfusion Imaging in US and Non-US Laboratories: Findings From the IAEA (International Atomic Energy Agency) Nuclear Cardiology Protocols Study

    Get PDF
    not availabl

    Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries

    Get PDF
    Purpose: Nuclear cardiology is widely used to diagnose coronary artery disease and to guide patient management, but data on current practices, radiation dose-related best practices, and radiation doses are scarce. To address these issues, the IAEA conducted a worldwide study of nuclear cardiology practice. We present the European subanalysis. Methods: In March 2013, the IAEA invited laboratories across the world to document all SPECT and PET studies performed in one week. The data included age, gender, weight, radiopharmaceuticals, injected activities, camera type, positioning, hardware and software. Radiation effective dose was calculated for each patient. A quality score was defined for each laboratory as the number followed of eight predefined best practices with a bearing on radiation exposure (range of quality score 0&nbsp;–&nbsp;8). The participating European countries were assigned to regions (North, East, South, and West). Comparisons were performed between the four European regions and between Europe and the rest-of-the-world (RoW). Results: Data on 2,381 European patients undergoing nuclear cardiology procedures in 102 laboratories in 27 countries were collected. A cardiac SPECT study was performed in 97.9&nbsp;% of the patients, and a PET study in 2.1&nbsp;%. The average effective dose of SPECT was 8.0 ± 3.4&nbsp;mSv (RoW 11.4 ± 4.3&nbsp;mSv; P &lt; 0.001) and of PET was 2.6 ± 1.5&nbsp;mSv (RoW 3.8 ± 2.5&nbsp;mSv; P &lt; 0.001). The mean effective doses of SPECT and PET differed between European regions (P &lt; 0.001 and P = 0.002, respectively). The mean quality score was 6.2 ± 1.2, which was higher than the RoW score (5.0 ± 1.1; P &lt; 0.001). Adherence to best practices did not differ significantly among the European regions (range 6 to 6.4; P = 0.73). Of the best practices, stress-only imaging and weight-adjusted dosing were the least commonly used. Conclusion: In Europe, the mean effective dose from nuclear cardiology is lower and the average quality score is higher than in the RoW. There is regional variation in effective dose in relation to the best practice quality score. A possible reason for the differences between Europe and the RoW could be the safety culture fostered by actions under the Euratom directives and the implementation of diagnostic reference levels. Stress-only imaging and weight-adjusted activity might be targets for optimization of European nuclear cardiology practice

    Inter-reader variability of SPECT MPI readings in low- and middle-income countries: Results from the IAEA-MPI Audit Project (I-MAP)

    No full text
    Background: Consistency of results between different readers is an important issue in medical imaging, as it affects portability of results between institutions and may affect patient care. The International Atomic Energy Agency (IAEA) in pursuing its mission of fostering peaceful applications of nuclear technologies has supported several training activities in the field of nuclear cardiology (NC) and SPECT myocardial perfusion imaging (MPI) in particular. The aim of this study was to verify the outcome of those activities through an international clinical audit on MPI where participants were requested to report on studies distributed from a core lab. Methods: The study was run in two phases: in phase 1, SPECT MPI studies were distributed as raw data and full processing was requested as per local practice. In phase 2, images from studies pre-processed at the core lab were distributed. Data to be reported included summed stress score (SSS); summed rest score (SRS); summed difference score (SDS); left ventricular (LV) ejection fraction (EF) and end- diastolic volume (EDV). Qualitative appraisals included the assessment of perfusion and presence of ischemia, scar or mixed patterns, presence of transient ischemic dilation (TID), and risk for cardiac events (CE). Twenty-four previous trainees from low- and middle-income countries participated (core participants group) and their results were assessed for inter-observer variability in each of the two phases, and for changes between phases. The same evaluations were performed for a group of eleven international experts (experts group). Results were also compared between the groups. Results: Expert readers showed an excellent level of agreement for all parameters in both phase 1 and 2. For core participants, the concordance of all parameters in phase 1 was rated as good to excellent. Two parameters which were re-evaluated in phase 2, namely SSS and SRS, showed an increased level of concordance, up to excellent in both cases. Reporting of categorical variables by expert readers remained almost unchanged between the two phases, while core participants showed an increase in phase 2. Finally, pooled LVEF values did not show a significant difference between core participants and experts. However, significant differences were found between LVEF values obtained using different software packages for cardiac analysis. Conclusions: In this study, inter-observer agreement was moderate-to-good for core group readers and good-to-excellent for expert readers. The quality of reporting is affected by the quality of processing. These results confirm the important role of the IAEA training activities in improving imaging in low- and middle-income countries

    Nuclear Cardiology Practices and Radiation Exposure in the Oceania Region: Results From the IAEA Nuclear Cardiology Protocols Study (INCAPS)

    No full text
    Background There is concern about radiation exposure with radionuclide myocardial perfusion imaging (MPI). This sub-study of the International Atomic Energy Agency (IAEA) Nuclear Cardiology Protocols Study reports radiation doses from MPI, and use of dose-optimisation protocols in Australia and New Zealand (ANZ), and compares them with data from the rest of the world. Methods Data were collected from 7911 MPI studies performed in 308 laboratories worldwide in one week in 2013, including 439 MPI studies from 34 ANZ laboratories. For each laboratory, effective radiation dose (ED) and a quality index (QI) score (out of 8) based on pre-specified “best practices” was determined. Results In ANZ patients, ED ranged from 0.9-17.9 milliSievert (mSv). Median ED was similar in ANZ compared with the rest of the world (10.0 (IQR: 6.5-11.7) vs. 10.0 (IQR 6.4-12.6, P=0.15), as were mean QI scores (5.5±0.7 vs. 5.4±1.3, P=0.84). Use of stress-only imaging (17.6% vs. 31.8% of labs, P=0.09) and weight-based dosing of technetium-99m (14.7% vs. 30.3%, P=0.07) was lower in ANZ compared with the rest of the world but this difference was not statistically significant. Median ED was significantly lower in metropolitan versus non-metropolitan laboratories (10.1 mSv vs. 11.6 mSv, P&lt;0.01), although mean QI scores were similar (5.4±0.8 vs. 5.5±0.7, P=0.75). Conclusion Across ANZ, there is variability in ED from MPI, and use of radiation safety practices, particularly between metropolitan and non-metropolitan laboratories. Overall, ANZ laboratories have a similar median ED to laboratories in the rest of the world

    Nuclear cardiology practice in Asia: Analysis of radiation exposure and best practice for myocardial perfusion imaging ― results from the IAEA nuclear cardiology protocols cross-sectional study (INCAPS) ―

    No full text
    Background: This paper examines the current status of radiation exposure to patients in myocardial perfusion imaging (MPI) in Asia. Methods and Results: Laboratories voluntarily provided information on MPI performed over a 1-week period. Eight best practice criteria regarding MPI were predefined by an expert panel. Implementation of ≥6 best practices (quality index [QI] ≥6) was pre-specified as a desirable goal for keeping radiation exposure at a low level. Radiation effective dose (ED) in 1,469 patients and QI of 69 laboratories in Asia were compared against data from 239 laboratories in the rest of the world (RoW). Mean ED was significantly higher in Asia (11.4 vs. 9.6 mSv; P&lt;0.0001), with significantly lower doses in South-East vs. East Asia (9.7 vs. 12.7 mSv; P&lt;0.0001). QI in Asia was lower than in RoW. In comparison with RoW, Asian laboratories used thallium more frequently, used weight-based technetium dosing less frequently, and trended towards a lower rate of stress-only imaging. Conclusions: MPI radiation dose in Asia is higher than that in the RoW and linked to less consistent use of laboratory best practices such as avoidance of thallium, weight-based dosing, and use of stress-only imaging. Given that MPI is performed in Asia within a diverse array of medical contexts, laboratory-specific adoption of best practices offers numerous opportunities to improve quality of care

    Nuclear cardiology practices and radiation exposure in Africa: Results from the IAEA Nuclear Cardiology Protocols Study (INCAPS)

    No full text
    Objective: While nuclear myocardial perfusion imaging (MPI) offers many benefits to patients with known or suspected cardiovascular disease, concerns exist regarding radiationassociated health effects. Little is known regarding MPI practice in Africa. We sought to characterise radiation doses and the use of MPI best practices that could minimise radiation in African nuclear cardiology laboratories, and compare these to practice worldwide. Methods: Demographics and clinical characteristics were collected for a consecutive sample of 348 patients from 12 laboratories in six African countries over a one-week period from March to April 2013. Radiation effective dose (ED) was estimated for each patient. A quality index (QI) enumerating adherence to eight best practices, identified a priori by an IAEA expert panel, was calculated for each laboratory. We compared these metrics with those from 7 563 patients from 296 laboratories outside Africa. Results: Median (interquartile range) patient ED in Africa was similar to that of the rest of the world [9.1 (5.1-15.6) vs 10.3 mSv (6.8-12.6), p = 0.14], although a larger proportion of African patients received a low ED, ≤ 9 mSv targeted in societal recommendations (49.7 vs 38.2%, p &lt; 0.001). Bestpractice adherence was higher among African laboratories (QI score: 6.3 ± 1.2 vs 5.4 ± 1.3, p = 0.013). However, median ED varied significantly among African laboratories (range: 2.0-16.3 mSv; p &lt; 0.0001) and QI range was 4-8. Conclusion: Patient radiation dose from MPI in Africa was similar to that in the rest of the world, and adherence to best practices was relatively high in African laboratories. Nevertheless there remain opportunities to further reduce radiation exposure to African patients from MPI

    Nuclear cardiology practices and radiation exposure in Africa: Results from the IAEA Nuclear Cardiology Protocols Study (INCAPS)

    Get PDF
    Objective: While nuclear myocardial perfusion imaging (MPI) offers many benefits to patients with known or suspected cardiovascular disease, concerns exist regarding radiationassociated health effects. Little is known regarding MPI practice in Africa. We sought to characterise radiation doses and the use of MPI best practices that could minimise radiation in African nuclear cardiology laboratories, and compare these to practice worldwide. Methods: Demographics and clinical characteristics were collected for a consecutive sample of 348 patients from 12 laboratories in six African countries over a one-week period from March to April 2013. Radiation effective dose (ED) was estimated for each patient. A quality index (QI) enumerating adherence to eight best practices, identified a priori by an IAEA expert panel, was calculated for each laboratory. We compared these metrics with those from 7 563 patients from 296 laboratories outside Africa. Results: Median (interquartile range) patient ED in Africa was similar to that of the rest of the world [9.1 (5.1-15.6) vs 10.3 mSv (6.8-12.6), p = 0.14], although a larger proportion of African patients received a low ED, ≤ 9 mSv targeted in societal recommendations (49.7 vs 38.2%, p &lt; 0.001). Bestpractice adherence was higher among African laboratories (QI score: 6.3 ± 1.2 vs 5.4 ± 1.3, p = 0.013). However, median ED varied significantly among African laboratories (range: 2.0-16.3 mSv; p &lt; 0.0001) and QI range was 4-8. Conclusion: Patient radiation dose from MPI in Africa was similar to that in the rest of the world, and adherence to best practices was relatively high in African laboratories. Nevertheless there remain opportunities to further reduce radiation exposure to African patients from MPI

    Opportunities for improvement on current nuclear cardiology practices and radiation exposure in Latin America: Findings from the 65-country IAEA Nuclear Cardiology Protocols cross-sectional Study (INCAPS)

    No full text
    Background: Comparison of Latin American (LA) nuclear cardiology (NC) practice with that in the rest of the world (RoW) will identify areas for improvement and lead to educational activities to reduce radiation exposure from NC. Methods and Results: INCAPS collected data on all SPECT and PET procedures performed during a single week in March-April 2013 in 36 laboratories in 10 LA countries (n&nbsp;=&nbsp;1139), and 272 laboratories in 55 countries in RoW (n&nbsp;=&nbsp;6772). Eight “best practices” were identified a priori and a radiation-related Quality Index (QI) was devised indicating the number used. Mean radiation effective dose (ED) in LA was higher than in RoW (11.8 vs 9.1&nbsp;mSv, p&nbsp;&lt;&nbsp;0.001). Within a populous country like Brazil, a wide variation in laboratory mean ED was found, ranging from 8.4 to 17.8&nbsp;mSv. Only 11% of LA laboratories achieved median ED &lt;9&nbsp;mSv, compared to 32% in RoW (p&nbsp;&lt;&nbsp;0.001). QIs ranged from 2 in a laboratory in Mexico to 7 in a laboratory in Cuba. Three major opportunities to reduce ED for LA patients were identified: (1) more laboratories could implement stress-only imaging, (2) camera-based methods of ED reduction, including prone imaging, could be more frequently used, and (3) injected activity of 99mTc could be adjusted reflecting patient weight/habitus. Conclusions: On average, radiation dose from NC is higher in LA compared to RoW, with median laboratory ED &lt;9&nbsp;mSv achieved only one third as frequently as in RoW. Opportunities to reduce radiation exposure in LA have been identified and guideline-based recommendations made to optimize protocols and adhere to the “as low as reasonably achievable” (ALARA) principle
    corecore