68 research outputs found

    The thrombin receptor in adrenal medullary microvascular endothelial cells is negatively coupled to adenylyl cyclase through a Gi protein

    Get PDF
    AbstractThe effects of thrombin on adenylyl cyclase activity were examined in rat adrenal medullary microvascular endothelial cells (RAMEC). Confluent RAMEC monolayers were stimulated for 5 min with cAMP-generating agents in the absence and presence of thrombin, and intracellular cAMP was measured with a radioligand binding assay. Thrombin (0.001–0.25 U/ml) dose-dependently inhibited IBMX-, isoproterenol- and forskolin-stimulated cAMP accumulation. A peptide agonist of the thrombin receptor, γ-thrombin, and the serine proteases trypsin and plasmin, also inhibited agonist-stimulated cAMP levels, while proteolytically inactive PPACK- or DIP-α-thrombins were without effect. Moreover, the thrombin inhibitor hirudin abolished the inhibitory effect of thrombin but not of the peptide agonist. These results suggest that the inhibitory action of thrombin on cAMP accumulation is mediated by a proteolytically-activated thrombin receptor. The inhibitor of Gi-proteins pertussis toxin abolished the inhibitory effect of thrombin on isoproterenol- or IBMX-stimulated cAMP production, while the phorbol ester PMA partly impaired it. The protein kinase C inhibitors staurosporine or H7 and the intracellular Ca2+ chelator BAPTA-AM were without effect. Collectively, our data suggest that the thrombin receptor in RAMEC is negatively coupled to adenylyl cyclase through a pertussis toxin-sensitive Gi-protein

    Co-expression of fibrotic genes in inflammatory bowel disease; A localized event?

    Get PDF
    IntroductionExtracellular matrix turnover, a ubiquitous dynamic biological process, can be diverted to fibrosis. The latter can affect the intestine as a serious complication of Inflammatory Bowel Diseases (IBD) and is resistant to current pharmacological interventions. It embosses the need for out-of-the-box approaches to identify and target molecular mechanisms of fibrosis.Methods and resultsIn this study, a novel mRNA sequencing dataset of 22 pairs of intestinal biopsies from the terminal ileum (TI) and the sigmoid of 7 patients with Crohn’s disease, 6 with ulcerative colitis and 9 control individuals (CI) served as a validation cohort of a core fibrotic transcriptomic signature (FIBSig), This signature, which was identified in publicly available data (839 samples from patients and healthy individuals) of 5 fibrotic disorders affecting different organs (GI tract, lung, skin, liver, kidney), encompasses 241 genes and the functional pathways which derive from their interactome. These genes were used in further bioinformatics co-expression analyses to elucidate the site-specific molecular background of intestinal fibrosis highlighting their involvement, particularly in the terminal ileum. We also confirmed different transcriptomic profiles of the sigmoid and terminal ileum in our validation cohort. Combining the results of these analyses we highlight 21 core hub genes within a larger single co-expression module, highly enriched in the terminal ileum of CD patients. Further pathway analysis revealed known and novel inflammation-regulated, fibrogenic pathways operating in the TI, such as IL-13 signaling and pyroptosis, respectively.DiscussionThese findings provide a rationale for the increased incidence of fibrosis at the terminal ileum of CD patients and highlight operating pathways in intestinal fibrosis for future evaluation with mechanistic and translational studies

    4th ESPT Conference:pharmacogenomics and personalized medicine - research progress and clinical implementation

    Get PDF
    The Fourth European Society of Pharmacogenomics and Personalized Therapy biennial conference was organized in collaboration with the Italian Society of Personalized Medicine (SIMeP) and was held at Benedictine Monastery of San Nicolò l'Arena in Catania, Sicily (Italy) on 4-7 October 2017. The congress addressed the research progress and clinical implementation in pharmacogenomics and personalized medicine. The Fourth European Society of Pharmacogenomics and Personalized Therapy congress brought together leading international scientists and healthcare professionals actively working in the fields of pharmacogenomics and personalized therapy. Altogether, 25 speakers in 15 session comprehensively covered broad spectrum of pharmacogenetics and pharmacogenomics research, clinical applications in different clinical disciplines attended by 270 delegates

    A global view of the OCA2-HERC2 region and pigmentation

    Get PDF
    Mutations in the gene OCA2 are responsible for oculocutaneous albinism type 2, but polymorphisms in and around OCA2 have also been associated with normal pigment variation. In Europeans, three haplotypes in the region have been shown to be associated with eye pigmentation and a missense SNP (rs1800407) has been associated with green/hazel eyes (Branicki et al. in Ann Hum Genet 73:160–170, 2009). In addition, a missense mutation (rs1800414) is a candidate for light skin pigmentation in East Asia (Yuasa et al. in Biochem Genet 45:535–542, 2007; Anno et al. in Int J Biol Sci 4, 2008). We have genotyped 3,432 individuals from 72 populations for 21 SNPs in the OCA2-HERC2 region including those previously associated with eye or skin pigmentation. We report that the blue-eye associated alleles at all three haplotypes were found at high frequencies in Europe; however, one is restricted to Europe and surrounding regions, while the other two are found at moderate to high frequencies throughout the world. We also observed that the derived allele of rs1800414 is essentially limited to East Asia where it is found at high frequencies. Long-range haplotype tests provide evidence of selection for the blue-eye allele at the three haplotyped systems but not for the green/hazel eye SNP allele. We also saw evidence of selection at the derived allele of rs1800414 in East Asia. Our data suggest that the haplotype restricted to Europe is the strongest marker for blue eyes globally and add further inferential evidence that the derived allele of rs1800414 is an East Asian skin pigmentation allele

    Research Highlights

    No full text

    Genotyping of CYP2C9 and VKORC1 in the Arabic Population of Al-Ahsa, Saudi Arabia

    Get PDF
    Polymorphisms in the genes encoding CYP2C9 enzyme and VKORC1 reductase significantly influence the dose variability of coumarinic oral anticoagulants (COAs). Substantial inter- and intraethnic variability exists in the frequencies of CYP2C9∗2 and ∗3 and VKORC1 –1639A alleles. However, the prevalence of CYP2C9 and VKORC1 genetic variants is less characterized in Arab populations. A total of 131 healthy adult subjects from the Al-Ahsa region of Saudi Arabia were genotyped for the CYP2C9∗2 and ∗3 and VKORC1 –1639G>A polymorphisms by PCR-RFLP method. The frequencies of the CYP2C9∗2 and ∗3 and VKORC1 –1639A alleles were 13.3%, 2.3%, and 42.4%, respectively, with no subjects carrying 2 defective alleles. The frequencies of the CYP2C9∗3 and VKORC1 –1639A alleles were significantly lower than those reported in different Arabian populations. None of the subjects with the VKORC1 –1639AA genotype were carriers of CYP2C9∗1/∗3 genotypes that lead to sensitivity to COAs therapy. The low frequency of the CYP2C9∗3 allele combined with the absence of subjects carrying 2 defective CYP2C9 alleles suggests that, in this specific population, pharmacogenetic COAs dosing may mostly rely upon VKORC1 genotyping

    Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece

    No full text
    Introduction: Dihydropyrimidine dehydrogenase (DPD), encoded by DPYD gene, is the rate-limiting enzyme responsible for fluoropyrimidine (FP) catabolism. DPYD gene variants seriously affect DPD activity and are well validated predictors of FP-associated toxicity. DPYD variants rs3918290, rs55886062, rs67376798, and rs75017182 are currently included in FP genetic-based dosing guidelines and are recommended for genotyping by the European Medicines Agency (EMA) before treatment initiation. In Greece, however, no data exist on DPYD genotyping. The aim of the present study was to analyze prevalence of DPYD rs3918290, rs55886062, rs67376798, rs75017182, and, additionally, rs1801160 variants, and assess their association with FP-induced toxicity in Greek cancer patients.Methods: Study group consisted of 313 FP-treated cancer patients. DPYD genotyping was conducted on QuantStudio ™ 12K Flex Real-Time PCR System (ThermoFisher Scientific) using the TaqMan® assays C__30633851_20 (rs3918290), C__11985548_10 (rs55886062), C__27530948_10 (rs67376798), C_104846637_10 (rs75017182) and C__11372171_10 (rs1801160).Results: Any grade toxicity (1-4) was recorded in 208 patients (66.5%). Out of them, 25 patients (12%) experienced grade 3-4 toxicity. DPYD EMA recommended variants were detected in 9 patients (2.9%), all experiencing toxicity (p = 0.031, 100% specificity). This frequency was found increased in grade 3-4 toxicity cases (12%, p = 0.004, 97.9% specificity). DPYD deficiency increased the odds of grade 3-4 toxicity (OR: 6.493, p = 0.014) and of grade 1-4 gastrointestinal (OR: 13.990, p = 0.014), neurological (OR: 4.134, p = 0.040) and nutrition/metabolism (OR: 4.821, p = 0.035) toxicities. FP dose intensity was significantly reduced in DPYD deficient patients (β = −0.060, p <0.001). DPYD rs1801160 variant was not associated with FP-induced toxicity or dose intensity. Triple interaction of DPYD*TYMS*MTHFR was associated with grade 3-4 toxicity (OR: 3.725, p = 0.007).Conclusion: Our findings confirm the clinical validity of DPYD reduced function alleles as risk factors for development of FP-associated toxicity in the Greek population. Pre-treatment DPYD genotyping should be implemented in clinical practice and guide FP dosing. DPYD*gene interactions merit further investigation as to their potential to increase the prognostic value of DPYD genotyping and improve safety of FP-based chemotherapy
    corecore