142 research outputs found
Differences in cortical response to acupressure and electroacupuncture stimuli
<p>Abstract</p> <p>Background</p> <p>FMRI studies focus on sub-cortical effects of acupuncture stimuli. The purpose of this study was to assess changes in primary somatosensory (S1) activity over the course of different types of acupuncture stimulation. We used whole head magnetoencephalography (MEG) to map S1 brain response during 15 minutes of electroacupuncture (EA) and acupressure (AP). We further assessed how brain response changed during the course of stimulation.</p> <p>Results</p> <p>Evoked brain response to EA differed from AP in its temporal dynamics by showing clear contralateral M20/M30 peaks while the latter demonstrated temporal dispersion. Both EA and AP demonstrated significantly decreased response amplitudes following five minutes of stimulation. However, the latency of these decreases were earlier in EA (~30 ms post-stimulus) than AP (> 100 ms). Time-frequency responses demonstrated early onset, event related synchronization (ERS), within the gamma band at ~70-130 ms and the theta band at ~50-200 ms post-stimulus. A prolonged event related desynchronization (ERD) of alpha and beta power occurred at ~100-300 ms post-stimulus. There was decreased beta ERD at ~100-300 ms over the course of EA, but not AP.</p> <p>Conclusion</p> <p>Both EA and AP demonstrated conditioning of SI response. In conjunction with their subcortical effects on endogenous pain regulation, these therapies show potential for affecting S1 processing and possibly altering maladaptive neuroplasticity. Thus, further investigation in neuropathic populations is needed.</p
Recommended from our members
Network Dynamics Underlying Speed-Accuracy Trade-Offs in Response to Errors
The ability to dynamically and rapidly adjust task performance based on its outcome is fundamental to adaptive, flexible behavior. Over trials of a task, responses speed up until an error is committed and after the error responses slow down. These dynamic adjustments serve to optimize performance and are well-described by the speed-accuracy trade-off (SATO) function. We hypothesized that SATOs based on outcomes reflect reciprocal changes in the allocation of attention between the internal milieu and the task-at-hand, as indexed by reciprocal changes in activity between the default and dorsal attention brain networks. We tested this hypothesis using functional MRI to examine the pattern of network activation over a series of trials surrounding and including an error. We further hypothesized that these reciprocal changes in network activity are coordinated by the posterior cingulate cortex (PCC) and would rely on the structural integrity of its white matter connections. Using diffusion tensor imaging, we examined whether fractional anisotropy of the posterior cingulum bundle correlated with the magnitude of reciprocal changes in network activation around errors. As expected, reaction time (RT) in trials surrounding errors was consistent with predictions from the SATO function. Activation in the default network was: (i) inversely correlated with RT, (ii) greater on trials before than after an error and (iii) maximal at the error. In contrast, activation in the right intraparietal sulcus of the dorsal attention network was (i) positively correlated with RT and showed the opposite pattern: (ii) less activation before than after an error and (iii) the least activation on the error. Greater integrity of the posterior cingulum bundle was associated with greater reciprocity in network activation around errors. These findings suggest that dynamic changes in attention to the internal versus external milieu in response to errors underlie SATOs in RT and are mediated by the PCC
Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives
Introduction: Chronic medicated patients with schizophrenia have marked reductions in sleep spindle activity and a correlated deficit in sleep-dependent memory consolidation. Using archival data, we investigated whether antipsychotic-naïve early course patients with schizophrenia and young non-psychotic first-degree relatives of patients with schizophrenia also show reduced sleep spindle activity and whether spindle activity correlates with cognitive function and symptoms. Method: Sleep spindles during Stage 2 sleep were compared in antipsychotic-naïve adults newly diagnosed with psychosis, young non-psychotic first-degree relatives of schizophrenia patients and two samples of healthy controls matched to the patients and relatives. The relations of spindle parameters with cognitive measures and symptom ratings were examined. Results: Early course schizophrenia patients showed significantly reduced spindle activity relative to healthy controls and to early course patients with other psychotic disorders. Relatives of schizophrenia patients also showed reduced spindle activity compared with controls. Reduced spindle activity correlated with measures of executive function in early course patients, positive symptoms in schizophrenia and IQ estimates across groups. Conclusions: Like chronic medicated schizophrenia patients, antipsychotic-naïve early course schizophrenia patients and young non-psychotic relatives of individuals with schizophrenia have reduced sleep spindle activity. These findings indicate that the spindle deficit is not an antipsychotic side-effect or a general feature of psychosis. Instead, the spindle deficit may predate the onset of schizophrenia, persist throughout its course and be an endophenotype that contributes to cognitive dysfunction
Lower Hemoglobin Correlates with Larger Stroke Volumes in Acute Ischemic Stroke
www.karger.com/cee This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only
Recommended from our members
Dissociable Genetic Contributions to Error Processing: A Multimodal Neuroimaging Study
Background: Neuroimaging studies reliably identify two markers of error commission: the error-related negativity (ERN), an event-related potential, and functional MRI activation of the dorsal anterior cingulate cortex (dACC). While theorized to reflect the same neural process, recent evidence suggests that the ERN arises from the posterior cingulate cortex not the dACC. Here, we tested the hypothesis that these two error markers also have different genetic mediation. Methods: We measured both error markers in a sample of 92 comprised of healthy individuals and those with diagnoses of schizophrenia, obsessive-compulsive disorder or autism spectrum disorder. Participants performed the same task during functional MRI and simultaneously acquired magnetoencephalography and electroencephalography. We examined the mediation of the error markers by two single nucleotide polymorphisms: dopamine D4 receptor (DRD4) C-521T (rs1800955), which has been associated with the ERN and methylenetetrahydrofolate reductase (MTHFR) C677T (rs1801133), which has been associated with error-related dACC activation. We then compared the effects of each polymorphism on the two error markers modeled as a bivariate response. Results: We replicated our previous report of a posterior cingulate source of the ERN in healthy participants in the schizophrenia and obsessive-compulsive disorder groups. The effect of genotype on error markers did not differ significantly by diagnostic group. DRD4 C-521T allele load had a significant linear effect on ERN amplitude, but not on dACC activation, and this difference was significant. MTHFR C677T allele load had a significant linear effect on dACC activation but not ERN amplitude, but the difference in effects on the two error markers was not significant. Conclusions: DRD4 C-521T, but not MTHFR C677T, had a significant differential effect on two canonical error markers. Together with the anatomical dissociation between the ERN and error-related dACC activation, these findings suggest that these error markers have different neural and genetic mediation
Recommended from our members
Differences in cortical response to acupressure and electroacupuncture stimuli
Background
FMRI studies focus on sub-cortical effects of acupuncture stimuli. The purpose of this study was to assess changes in primary somatosensory (S1) activity over the course of different types of acupuncture stimulation. We used whole head magnetoencephalography (MEG) to map S1 brain response during 15 minutes of electroacupuncture (EA) and acupressure (AP). We further assessed how brain response changed during the course of stimulation.
Results
Evoked brain response to EA differed from AP in its temporal dynamics by showing clear contralateral M20/M30 peaks while the latter demonstrated temporal dispersion. Both EA and AP demonstrated significantly decreased response amplitudes following five minutes of stimulation. However, the latency of these decreases were earlier in EA (~30 ms post-stimulus) than AP (> 100 ms). Time-frequency responses demonstrated early onset, event related synchronization (ERS), within the gamma band at ~70-130 ms and the theta band at ~50-200 ms post-stimulus. A prolonged event related desynchronization (ERD) of alpha and beta power occurred at ~100-300 ms post-stimulus. There was decreased beta ERD at ~100-300 ms over the course of EA, but not AP.
Conclusion
Both EA and AP demonstrated conditioning of SI response. In conjunction with their subcortical effects on endogenous pain regulation, these therapies show potential for affecting S1 processing and possibly altering maladaptive neuroplasticity. Thus, further investigation in neuropathic populations is needed
Abnormally persistent fMRI activation during antisaccades in schizophrenia: a neural correlate of perseveration
Objective: Impaired antisaccade performance is a consistent cognitive finding in schizophrenia. Antisaccades require both response inhibition and volitional motor programming, functions that are essential to flexible responding. We investigated whether abnormal timing of hemodynamic responses (HDRs) to antisaccades might contribute to perseveration of ocular motor responses in schizophrenia. We focused on the frontal eye field (FEF), which has been implicated in the persistent effects of antisaccades on subsequent responses in healthy individuals. Method: Eighteen chronic, medicated schizophrenia outpatients and 15 healthy controls performed antisaccades and prosaccades during functional MRI. Finite impulse response models provided unbiased estimates of event-related HDRs. We compared groups on the peak amplitude, time-to-peak, and full-width half-max of the HDRs. Results: In patients, HDRs in bilateral FEF were delayed and prolonged but ultimately of similar amplitude to that of controls. These abnormalities were present for antisaccades, but not prosaccades, and were not seen in a control region. More prolonged HDRs predicted slower responses in trials that followed an antisaccade. This suggests that persistent FEF activity following an antisaccade contributes to inter-trial effects on latency. Conclusions: Delayed and prolonged HDRs for antisaccades in schizophrenia suggest that the functions necessary for successful antisaccade performance take longer to implement and are more persistent. If abnormally persistent neural responses on cognitively demanding tasks are a more general feature of schizophrenia, they may contribute to response perseveration, a classic behavioral abnormality. These findings also underscore the importance of evaluating the temporal dynamics of neural activity to understand cognitive dysfunction in schizophrenia
Recommended from our members
Behavioral inhibition in childhood predicts smaller hippocampal volume in adolescent offspring of parents with panic disorder
Behavioral inhibition (BI) is a genetically influenced behavioral profile seen in 15–20% of 2-year-old children. Children with BI are timid with people, objects and situations that are novel or unfamiliar, and are more reactive physiologically to these challenges as evidenced by higher heart rate, pupillary dilation, vocal cord tension and higher levels of cortisol. BI predisposes to the later development of anxiety, depression and substance abuse. Reduced hippocampal volumes have been observed in anxiety disorders, depression and posttraumatic stress disorder. Animal models have demonstrated that chronic stress can damage the hippocampal formation and implicated cortisol in these effects. We, therefore, hypothesized that the hippocampi of late adolescents who had been behaviorally inhibited as children would be smaller compared with those who had not been inhibited. Hippocampal volume was measured with high-resolution structural magnetic resonance imaging in 43 females and 40 males at 17 years of age who were determined to be BI+ or BI− based on behaviors observed in the laboratory as young children. BI in childhood predicted reduced hippocampal volumes in the adolescents who were offspring of parents with panic disorder, or panic disorder with comorbid major depression. We discuss genetic and environmental factors emanating from both child and parent that may explain these findings. To the best of our knowledge, this is the first study to demonstrate a relationship between the most extensively studied form of temperamentally based human trait anxiety, BI, and hippocampal structure. The reduction in hippocampal volume, as reported by us, suggests a role for the hippocampus in human trait anxiety and anxiety disorder that warrants further investigation
- …