272 research outputs found

    Feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    Get PDF
    A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow

    Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    Get PDF
    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated

    Surface heat transfer coefficients of pin-finned cylinders

    Get PDF
    An experimental investigation was conducted to measure heat-transfer coefficients for a 15.24-centimeter-diameter cylinder with pin fins on its surface. Pin diameters of 0.3175 and 0.6350 centimeter with staggered pin spacings of 3 and 4 pin diameters and pin lengths of 5, 7, and 9 pin diameters were tested. Flow was normal to the axis of the cylinder, and local heat-transfer coefficients were measured as a function of angle around the circumference of the cylinder. The average heat-transfer coefficient was also computed. Reynolds number based on pin diameter ranged from 3600 to 27,750. The smallest diameter, closest spacing, and largest pin-length-to-diameter ratio gave the highest average effective heat-transfer coefficients

    Design of experiments for measuring heat-transfer coefficients with a lumped-parameter calorimeter

    Get PDF
    A theoretical investigation was conducted to determine optimum experimental conditions for using a lumped-parameter calorimeter to measure heat-transfer coefficients and heating rates. A mathematical model of the transient temperature response of the calorimeter was used with the measured temperature response to predict the heat-transfer coefficient and the rate of heating. A sensitivity analysis was used to determine the optimum transient experiment for simultaneously measuring the heat addition during heating and the convective heat-transfer coefficient during heating and cooling of a lumped-parameter calorimeter. Optimum experiments were also designed for measuring the convective heat-transfer coefficient during both heating and cooling and cooling only

    External fins and ejector action for reducing the infrared emission of engine exhaust ducting

    Get PDF
    An analytical investigation was conducted to determine the feasibility of using external fins and ejector action on the exhaust ducting of a helicopter to reduce the infrared emission of the aircraft. Temperatures were calculated for both circular disk fins and pin fins. Results show that combining ejector action with fins can lower the metal temperature to acceptable levels at least for high flight speeds

    Length to diameter ratio and row number effects in short pin fin heat transfer

    Get PDF
    The relative effects of pin length to diameter ratio and of pin row geometry on the heat transfer from pin fins, was determined. Array averaged heat transfer coefficients on pin and endwall surfaces were measured for two configurations of staggered arrays of short pin fins (length to diameter ratio of 4). One configuration contained eight streamwise rows of pins, while the other contained only four rows. Results showed that both the 8-row and the 4-row configurations for an L sub p/D of 4, exhibit higher heat transfer than in similar tests on shorter pin fns (L sub p/D of 1/2 and 2). It was also found that for this L sub p/D ratio, the array averaged heat transfer was slightly higher with eight rows of staggered pins than with only four rows

    Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    Get PDF
    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence

    Effect of location in an array on heat transfer to a cylinder in crossflow

    Get PDF
    An experiment was conducted to measure the heat transfer from a heated cylinder in crossflow in an array of circular cylinders. All cylinders had a length-to-diameter ratio of 3.0. Both in-line and staggered array patterns were studied. The cylinders were spaced 2.67 diameters apart center-to-center in both the axial and transverse directions to the flow. The row containing the heated cylinder remained in a fixed position in the channel and the relative location of this row within the array was changed by adding up to five upstream rows. The working fluid was nitrogen gas at pressures from 100 to 600 kPa. The Reynolds number ranged based on cylinder diameter and average unobstructed channel velocity was from 5,000 to 125,000. Turbulence intensity: profiles were measured for each case at a point one half space upstream of the row containing the heated cylinder. The basis of comparison for all the heat transfer data was the single row with the heated cylinder. For the in-line cases the addition of a single row of cylinders upstream of the row containing the heated cylinder increased the heat transfer by an average of 50 percent above the base case. Adding up to five more rows caused no increase or decrease in heat transfer. Adding rows in the staggered array cases resulted in average increases in heat transfer of 21, 64, 58, 46, and 46 percent for one to five upstream rows, respectively

    The influence of jet-grid turbulence on heat transfer from the stagnation region of a cylinder in crossflow

    Get PDF
    The effect of high-intensity turbulence on heat transfer from the stagnation region of a circular cylinder in crossflow was studied. The work was motivated by the desire to be able to more fully understand and predict the heat transfer to the leading edge of a turbine airfoil. In order to achieve high levels of turbulence with a reasonable degree of isotropy and homogeneity, a jet-injection turbulence grid was used. The jet grid provided turbulence intensities of 10 to 12 percent, measured at the test cylinder location, for downstream blowing with the blowing rate adjusted to an optimal value for flow uniformity. Heat transfer augmentation above the zeroturbulence case ranged from 37 to 53 percent for the test cylinder behind the jet grid for a cylinder Reynolds number range of 48,000 to 180,000, respectively. The level of heat transfer augmentation was found to be fairly uniform with respect to circumferential distance from the stagnation line. Stagnation point heat transfer results (expressed in terms of the Frossling number) were found to be somewhat low with respect to previous studies, when compared on the basis of equal values of the parameter Tu Re(1/2), indicating an additional Reynolds number effect as observed by previous investigators. Consequently, for a specified value of Tu Re(1/2), data obtained with a relatively high turbulence intensity will have a lower value of the Frossling number

    Preliminary results of a study of the relationship between free-stream turbulence and stagnation region heat transfer

    Get PDF
    Preliminary results of a study to investigate the relationship between free stream turbulence and heat transfer augmentation in the stagnation region is presented. The effects of free stream turbulence and surface roughness on spanwise averaged heat transfer were investigated. Turbulence was measured upstream of a cylinder placed in the wake of an array of parallel wires that were perpendicular to the cylinder axis. Finally, flow visualization and thermal visualization techniques were combined to show the relationship between vortices in the stagnation region and spanwise variations in heat transfer
    corecore