9 research outputs found

    Targeting Metabolic Reprogramming to Improve Breast Cancer Treatment: An In Vitro Evaluation of Selected Metabolic Inhibitors Using a Metabolomic Approach

    No full text
    Characteristic metabolic adaptations are recognized as a cancer hallmark. Breast cancer, like other cancer types, displays cellular respiratory switches—in particular, the Warburg effect—and important fluctuations in the glutamine and choline metabolisms. This cancer remains a world health issue mainly due to the side effects associated with chemotherapy, which force a reduction in the administered dose or even a complete discontinuation of the treatment. For example, Doxorubicin is efficient to treat breast cancer but unfortunately induces severe cardiotoxicity. In the present in vitro study, selected metabolic inhibitors were evaluated alone or in combination as potential treatments against breast cancer. In addition, the same inhibitors were used to possibly potentiate the effects of Doxorubicin. As a result, the combination of CB-839 (glutaminase inhibitor) and Oxamate (lactate dehydrogenase inhibitor) and the combination of CB-839/Oxamate/D609 (a phosphatidylcholine-specific phospholipase C inhibitor) caused significant cell mortality in both MDA-MB-231 and MCF-7, two breast cancer cell lines. Furthermore, all inhibitors were able to improve the efficacy of Doxorubicin on the same cell lines. Those findings are quite encouraging with respect to the clinical goal of reducing the exposure of patients to Doxorubicin and, subsequently, the severity of the associated cardiotoxicity, while keeping the same treatment efficacy

    Investigation of Mitochondrial Adaptations to Modulation of Carbohydrate Supply during Adipogenesis of 3T3-L1 Cells by Targeted 1H-NMR Spectroscopy

    No full text
    (1) Background: White adipose tissue (WAT) is a dynamic and plastic tissue showing high sensitivity to carbohydrate supply. In such a context, the WAT may accordingly modulate its mitochondrial metabolic activity. We previously demonstrated that a partial replacement of glucose by galactose in a culture medium of 3T3-L1 cells leads to a poorer adipogenic yield and improved global mitochondrial health. In the present study, we investigate key mitochondrial metabolic actors reflecting mitochondrial adaptation in response to different carbohydrate supplies. (2) Methods: The metabolome of 3T3-L1 cells was investigated during the differentiation process using different glucose/galactose ratios and by a targeted approach using 1H-NMR (Proton nuclear magnetic resonance) spectroscopy; (3) Results: Our findings indicate a reduction of adipogenic and metabolic overload markers under the low glucose/galactose condition. In addition, a remodeling of the mitochondrial function triggers the secretion of metabolites with signaling and systemic energetical homeostasis functions. Finally, this study also sheds light on a new way to consider the mitochondrial metabolic function by considering noncarbohydrates related pathways reflecting both healthier cellular and mitochondrial adaptation mechanisms; (4) Conclusions: Different carbohydrates supplies induce deep mitochondrial metabolic and function adaptations leading to overall adipocytes function and profile remodeling during the adipogenesis

    Protective Effect of Nebivolol against Oxidative Stress Induced by Aristolochic Acids in Endothelial Cells.

    No full text
    Aristolochic acids (AAs) are powerful nephrotoxins that cause severe tubulointerstitial fibrosis. The biopsy-proven peritubular capillary rarefaction may worsen the progression of renal lesions via tissue hypoxia. As we previously observed the overproduction of reactive oxygen species (ROS) by cultured endothelial cells exposed to AA, we here investigated in vitro AA-induced metabolic changes by 1H-NMR spectroscopy on intracellular medium and cell extracts. We also tested the effects of nebivolol (NEB), a β-blocker agent exhibiting antioxidant properties. After 24 h of AA exposure, significantly reduced cell viability and intracellular ROS overproduction were observed in EAhy926 cells; both effects were counteracted by NEB pretreatment. After 48 h of exposure to AA, the most prominent metabolite changes were significant decreases in arginine, glutamate, glutamine and glutathione levels, along with a significant increase in the aspartate, glycerophosphocholine and UDP-N-acetylglucosamine contents. NEB pretreatment slightly inhibited the changes in glutathione and glycerophosphocholine. In the supernatants from exposed cells, a decrease in lactate and glutamate levels, together with an increase in glucose concentration, was found. The AA-induced reduction in glutamate was significantly inhibited by NEB. These findings confirm the involvement of oxidative stress in AA toxicity for endothelial cells and the potential benefit of NEB in preventing endothelial injury.info:eu-repo/semantics/publishe

    Metabolic reprogramming in metastatic melanoma with acquired resistance to targeted therapies: Integrative metabolomic and proteomic analysis

    No full text
    Treatments of metastatic melanoma underwent an impressive development over the past few years, with the emergence of small molecule inhibitors targeting mutated proteins, such as BRAF, NRAS, or cKIT. However, since a significant proportion of patients acquire resistance to these therapies, new strategies are currently being considered to overcome this issue. For this purpose, melanoma cell lines with mutant BRAF, NRAS, or cKIT and with acquired resistances to BRAF, MEK, or cKIT inhibitors, respectively, were investigated using both1H-NMR-based metabonomic and protein microarrays. The1H-NMR profiles highlighted a similar go and return pattern in the metabolism of the BRAF, NRAS, and cKIT mutated cell lines. Indeed, melanoma cells exposed to mutation-specific inhibitors underwent metabolic disruptions following acute exposure but partially recovered their basal metabolism in long-term exposure, most likely acquiring resistance skills. The protein microarrays inquired about the potential cellular mechanisms used by the resistant cells to escape drug treatment, by showing decreased levels of proteins linked to the drug efficacy, especially in the downstream part of the MAPK signaling pathway. Integrating metabonomic and proteomic findings revealed some metabolic pathways (i.e. glutaminolysis, choline metabolism, glutathione production, glycolysis, oxidative phosphorylation) and key proteins (i.e. EPHA2, DUSP4, and HIF-1A) as potential targets to discard drug resistance.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A New Classification Method of Metastatic Cancers Using a H-1-NMR-Based Approach: A Study Case of Melanoma, Breast, and Prostate Cancer Cell Lines

    No full text
    In this study, metastatic melanoma, breast, and prostate cancer cell lines were analyzed using a 1H-NMR-based approach in order to investigate common features and differences of aggressive cancers metabolomes. For that purpose, 1H-NMR spectra of both cellular extracts and culture media were combined with multivariate data analysis, bringing to light no less than 20 discriminant metabolites able to separate the metastatic metabolomes. The supervised approach succeeded in classifying the metastatic cell lines depending on their glucose metabolism, more glycolysis-oriented in the BRAF proto-oncogene mutated cell lines compared to the others. Other adaptive metabolic features also contributed to the classification, such as the increased total choline content (tCho), UDP-GlcNAc detection, and various changes in the glucose-related metabolites tree, giving additional information about the metastatic metabolome status and direction. Finally, common metabolic features detected via 1H-NMR in the studied cancer cell lines are discussed, identifying the glycolytic pathway, Kennedy's pathway, and the glutaminolysis as potential and common targets in metastasis, opening up new avenues to cure cancer.status: publishe

    Short halt in vaping modifies cardio-respiratory parameters and urine metabolome: a randomized trial.

    No full text
    Propylene glycol and glycerol are e-cigarette constituents that facilitate liquid vaporization and nicotine transport. As these small hydrophilic molecules quickly cross the lung epithelium, we hypothesized that short-term cessation of vaping in regular users would completely clear aerosol deposit from the lungs and reverse vaping-induced cardiorespiratory toxicity. We aimed to assess the acute effects of vaping and their reversibility on biological/clinical cardiorespiratory parameters [serum/urine pneumoproteins, hemodynamic parameters, lung-function test and diffusing capacities, transcutaneous gas tensions (primary outcome), and skin microcirculatory blood flow]. Regular e-cigarette users were enrolled in this randomized, investigator-blinded, three-period crossover study. The periods consisted of nicotine-vaping (nicotine-session), nicotine-free vaping (nicotine-free-session), and complete cessation of vaping (stop-session), all maintained for 5 days before the session began. Multiparametric metabolomic analyses were used to verify subjects' protocol compliance. Biological/clinical cardiorespiratory parameters were assessed at the beginning of each session (baseline) and after acute vaping exposure. Compared with the nicotine- and nicotine-free-sessions, a specific metabolomic signature characterized the stop-session. Baseline serum club cell protein-16 was higher during the stop-session than the other sessions (P < 0.01), and heart rate was higher in the nicotine-session (P < 0.001). Compared with acute sham-vaping in the stop-session, acute nicotine-vaping (nicotine-session) and acute nicotine-free vaping (nicotine-free-session) slightly decreased skin oxygen tension (P < 0.05). In regular e-cigarette-users, short-term vaping cessation seemed to shift baseline urine metabolome and increased serum club cell protein-16 concentration, suggesting a decrease in lung inflammation. Additionally, acute vaping with and without nicotine decreased slightly transcutaneous oxygen tension, likely as a result of lung gas exchanges disturbances.info:eu-repo/semantics/publishe

    Gut Microbiota-Induced Changes in β-Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Alcohol Use Disorder.

    No full text
    Patients with alcohol use disorder (AUD) present with important emotional, cognitive, and social impairments. The gut microbiota has been recently shown to regulate brain functions and behavior but convincing evidence of its role in AUD is lacking. Here, we show that gut dysbiosis is associated with metabolic alterations that affect behavioral (depression, sociability) and neurobiological (myelination, neurotransmission, inflammation) processes involved in alcohol addiction. By transplanting the gut microbiota from AUD patients to mice, we point out that the production of ethanol by specific bacterial genera and the reduction of lipolysis are associated with a lower hepatic synthesis of β-hydroxybutyrate (BHB), which thereby prevents the neuroprotective effect of BHB. We confirm these results in detoxified AUD patients, in which we observe a persisting ethanol production in the feces as well as correlations among low plasma BHB levels and social impairments, depression, or brain white matter alterations
    corecore