6 research outputs found

    Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis

    Get PDF
    The use of gold nanoparticles combined with other organic and inorganic materials for designing nanostructured films has demonstrated their versatility for various applications, including optoelectronic devices and chemical sensors. In this study, we reported the synthesis and characterization of gold nanoparticles stabilized with poly(allylamine hydrochloride) (Au@PAH NPs), as well as the capability of this material to form multilayer Layer-by-Layer (LbL) nanostructured films with metal tetrasulfonated phthalocyanines (MTsPc). Film growth was monitored by UV-Vis absorption spectroscopy, atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). Once LbL films have been applied as active layers in chemical sensors, Au@PAH/MTsPc and PAH/MTsPc LbL films were used in an electronic tongue system for milk analysis regarding fat content. The capacitance data were treated using Principal Component Analysis (PCA), revealing the role played by the gold nanoparticles on the LbL films electrical properties, enabling this kind of system to be used for analyzing complex matrices such as milk without any prior pretreatment

    Tuning the Electrical Properties of Electrospun Nanofibers with Hybrid Nanomaterials for Detecting Isoborneol in Water Using an Electronic Tongue

    No full text
    The presence of contaminants in water is a subject of paramount importance nowadays, which can make water improper to human consumption even when these contaminants are present at very low concentrations, causing health issues and economic losses. In this work, we evaluated the performance of nanocomposites based on nylon 6,6/chitosan electrospun nanofibers modified by cellulose nanowhiskers combined with functional materials like silver nanoparticles, gold nanoparticles, and reduced graphene oxide to be used as sensing layers of an electronic tongue (e-tongue) to detect Isoborneol. This compound, found in some plants and essential oils, is used as a natural repellent and also to produce many other chemicals. Additionally, its chemical structure is related to that of 2-methylisoborneol, a critical pollutant in aqueous media. The synergism between the nanomaterials combined with electrospun nanofibers could be verified by the enhancement of the charge transference ability. Additionally, electrical capacitance data measured with the impedimetric e-tongue were treated by Principal Component Analysis (PCA), and revealed the sensing system was able to discriminate samples contaminated with Isoborneol at nanomolar concentrations. Moreover, the electronic tongue system could detect Isoborneol in real water samples under different concentrations

    Electrospun Polyamide 6/Poly(allylamine hydrochloride) Nanofibers Functionalized with Carbon Nanotubes for Electrochemical Detection of Dopamine

    No full text
    The use of nanomaterials as an electroactive medium has improved the performance of bio/chemical sensors, particularly when synergy is reached upon combining distinct materials. In this paper, we report on a novel architecture comprising electrospun polyamide 6/poly­(allylamine hydrochloride) (PA6/PAH) nanofibers functionalized with multiwalled carbon nanotubes, used to detect the neurotransmitter dopamine (DA). Miscibility of PA6 and PAH was sufficient to form a single phase material, as indicated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), leading to nanofibers with no beads onto which the nanotubes could adsorb strongly. Differential pulse voltammetry was employed with indium tin oxide (ITO) electrodes coated with the functionalized nanofibers for the selective electrochemical detection of dopamine (DA), with no interference from uric acid (UA) and ascorbic acid (AA) that are normally present in biological fluids. The response was linear for a DA concentration range from 1 to 70 μmol L<sup>–1</sup>, with detection limit of 0.15 μmol L<sup>–1</sup> (S/N = 3). The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and biosensors
    corecore