250 research outputs found

    Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

    Get PDF
    This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese), using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extraction conditions were obtained using a sample pH of 4.0, a sample flow rate of 6.0 mL min−1, 30.0 mg of sorbent mass, and 1.0 mol L−1 HNO3 as the eluent at a flow rate of 4.0 mL min−1. The limit of detection for zinc was 1.9 μg L−1, and the precision was below 0.82% (20.0 μg L−1, n = 7). The analytical curve was linear from 2 to 50 μg L−1, with a correlation coefficient of 0.9996. The method developed was successfully applied to spiked Brazilian sugar cane spirit, and accuracy was assessed through recovery tests, with results ranging from 83% to 100%

    Moringa oleifera Lam. seeds as a natural solid adsorbent for removal of AgI in aqueous solutions

    Full text link
    This work describes the sorption potential of Moringa oleifera seeds for the decontamination of AgI in aqueous solutions. Infrared spectroscopy was used for elucidating possible functional groups responsible for uptaking AgI. Sorption studies using AgI standard solutions were carried out in batch experiments as functions of adsorbent mass, extraction time, particle size and pH. The AgI was quantified before and after the removal experiments using flame atomic absorption spectrometry. Furthermore, based on adsorption studies and adsorption isotherms applied to the Langmuir model, it was possible to verify that M. oleifera seeds present a high adsorption capacity. The optimum conditions were: 2.0 g of adsorbent with particle size of 75-500 µm, 100 mL of 25.0 mg L-1 AgI, extraction time of 20 min and pH at 6.5. The results show that Moringa oleifera seeds can be used for removing AgI in aqueous solutions

    Determination of Low Levels of Lead in Beer Using Solid-Phase Extraction and Detection by Flame Atomic Absorption Spectrometry

    Get PDF
    In this study, a method for the determination of low concentrations of lead in beer samples using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the online preconcentration system, such as sample pH, preconcentration flow rate, eluent flow rate, eluent concentration, particle size, and sorbent mass, were studied. The optimum extraction conditions were obtained using a sample pH of 6.0, sample flow rate of 6.0 mL min−1, 63.0 mg of sorbent mass, and 2.0 mol L−1 HNO3 at a flow rate of 2.0 mL min−1 as the eluent. With the optimized conditions, the preconcentration factor, precision, detection limit, consumption index, and sample throughput were estimated as 93, 0.3% (10.0 μg L−1, n = 7), 7.5 μg L−1, 0.11 mL, and 23 samples per hour, respectively. The method developed was successfully applied to beer samples and recovery tests, with recovery ranging from 80% to 100%

    Biosorbents in the Metallic Ions Determination

    Get PDF
    This chapter provides an overview and discusses analytical strategies for metallic ions determination using solid phase extraction. Solid phase extraction (SPE) is a much-used technique for extraction and/or concentration of complex samples, so that the analytes present in low concentration were detected mainly using chromatographic methods. However, in recent years, this technique has been widely used in the development of methodologies for metallic ions determination in the deferential samples. This technique shows simplicity and rapidity comparing with other conventional techniques, liquid–liquid extraction, cloud point extraction and others. Solid phase extraction procedures become even more interesting when commercial adsorbents are exchanged for others with higher adsorptive capacity, selectivity, flexibility, economy and low environmental impacts. For this purpose, some inorganic, organic and several natural adsorbents are used. New approaches to obtain adsorbent materials from natural sources such as fungi, bacteria, industrial residues and composting materials have received attention. These materials have been used in the development of analytical methods with varied proposals, such as preconcentration or speciation of metal ions
    corecore