48 research outputs found

    Serum Markers of Hepatocyte Death and Apoptosis Are Non Invasive Biomarkers of Severe Fibrosis in Patients with Alcoholic Liver Disease

    Get PDF
    BACKGROUND: Quantification of hepatocyte death is useful to evaluate the progression of alcoholic liver diseases. Our aims were to quantify and correlate the circulating levels of Cytokeratin 18 (CK18) and its caspases-generated fragment to disease severity in heavy alcoholics. METHODOLOGY/PRINCIPAL FINDINGS: CK18 and CK18-fragment were evaluated in the serum of 143 heavy alcoholics. Serum levels of markers of hepatocyte death (CK18), apoptosis (CK18 fragment) and necrosis (CK18 -CK18 fragment) increased in patients with severe fibrosis compared to patients with mild fibrosis. These markers strongly correlated with Mallory-Denk bodies, hepatocyte ballooning, fibrosis and with hepatic TNFα and TGFβ assessed in the liver of 24 patients. Elevated levels of serum hepatocyte death and apoptotic markers were independent risk factors in predicting severe fibrosis in a model combining alkaline phosphatase, bilirubin, prothrombin index, hyaluronate, hepatocyte death and apoptotic markers. The level of markers of hepatocyte death and apoptosis had an area under the receiving operator curve that predicted severe fibrosis of 0.84 and 0.76, respectively. CONCLUSION/SIGNIFICANCE: Death of hepatocytes can be easily evaluated with serum markers and correlated with severe fibrosis in heavy alcohol drinkers. These biomarkers could be useful to rapidly evaluate liver injuries and the efficacy of therapies

    ADCY5 couples glucose to insulin secretion in human islets

    Get PDF
    Single nucleotide polymorphisms (SNPs) within the ADCY5 gene, encoding adenylate cyclase 5, are associated with elevated fasting glucose and increased type 2 diabetes (T2D) risk. Despite this, the mechanisms underlying the effects of these polymorphic variants at the level of pancreatic β-cells remain unclear. Here, we show firstly that ADCY5 mRNA expression in islets is lowered by the possession of risk alleles at rs11708067. Next, we demonstrate that ADCY5 is indispensable for coupling glucose, but not GLP-1, to insulin secretion in human islets. Assessed by in situ imaging of recombinant probes, ADCY5 silencing impaired glucose-induced cAMP increases and blocked glucose metabolism toward ATP at concentrations of the sugar >8 mmol/L. However, calcium transient generation and functional connectivity between individual human β-cells were sharply inhibited at all glucose concentrations tested, implying additional, metabolism-independent roles for ADCY5. In contrast, calcium rises were unaffected in ADCY5-depleted islets exposed to GLP-1. Alterations in β-cell ADCY5 expression and impaired glucose signaling thus provide a likely route through which ADCY5 gene polymorphisms influence fasting glucose levels and T2D risk, while exerting more minor effects on incretin action

    Autophagy and Non-Alcoholic Fatty Liver Disease

    No full text
    Autophagy, or cellular self-digestion, is a catabolic process that targets cell constituents including damaged organelles, unfolded proteins, and intracellular pathogens to lysosomes for degradation. Autophagy is crucial for development, differentiation, survival, and homeostasis. Important links between the regulation of autophagy and liver complications associated with obesity, non-alcoholic fatty liver disease (NAFLD), have been reported. The spectrum of these hepatic abnormalities extends from isolated steatosis to non-alcoholic steatohepatitis (NASH), steatofibrosis, which sometimes leads to cirrhosis, and hepatocellular carcinoma. NAFLD is one of the three main causes of cirrhosis and increases the risk of liver-related death and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of a normal liver to steatosis and then more severe disease are complex and still unclear. The regulation of the autophagic flux, a dynamic response, and the knowledge of the role of autophagy in specific cells including hepatocytes, hepatic stellate cells, immune cells, and hepatic cancer cells have been extensively studied these last years. This review will provide insight into the current understanding of autophagy and its role in the evolution of the hepatic complications associated with obesity, from steatosis to hepatocellular carcinoma

    Autophagy, signaling and obesity

    No full text
    Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in the regulation of cellular processes such as lipid metabolism and insulin sensitivity. Important links between the regulation of autophagy and obesity including food intake, adipose tissue development, beta cell function, insulin sensitivity and hepatic steatosis exist. This review will provide insight into the current understanding of autophagy, its regulation, and its role in the complications associated with obesity. (C) 2012 Elsevier Ltd. All rights reserve

    Syndecan-4 is regulated by IL-1β in β-cells and human islets

    No full text
    Syndecans (SDC) are important multifunctional components of the extracellular matrix mainly described in endothelial cells. We studied the expression and regulation of SDC in cultured MIN6B1 cells and pancreatic islets. qRT-PCR revealed that syndecan-4 (SDC4) was the predominant isoform expressed in MIN6B1 cells and islets compared to other forms of SDC. Immunofluorescence in mouse and human pancreas sections revealed that SDC4 is mainly expressed in β-cells compared to other pancreatic cells. Exposure of MIN6B1 and human islets to IL-1β dose-dependently induced a rapid and transient expression of SDC4 while SRC and STAT3 inhibitors decreased this effect. Exposure of human islets to Il-1β caused an increase of SDC4 shedding, however treatment with STAT3 and SRC inhibitors inhibited this effect. These results indicate that SDC4 is upregulated by IL-1β through the SRC-STAT3 pathway and this pathway is also involved in SDC4 shedding in islets

    Cadherin Engagement Improves Insulin Secretion of Single Human β-Cells

    No full text
    The aim of this study was to assess whether cadherin-mediated adhesion of human islet cells was affected by insulin secretagogues and explore the role of cadherins in the secretory activity of β-cells. Experiments were carried out with single islet cells adherent to chimeric proteins made of functional E-, N-, or P-cadherin ectodomains fused to the Fc fragment of immunoglobulin (E-cad/Fc, N-cad/Fc, and P-cad/Fc) and immobilized on an inert substrate. We observed that cadherin expression in islet cells was not affected by insulin secretagogues. Adhesion tests showed that islet cells attached to N-cad/Fc and E-cad/Fc acquired, in a time- and secretagogue-dependent manner, a spreading form that was inhibited by blocking cadherin antibodies. By reverse hemolytic plaque assay, we showed that glucose-stimulated insulin secretion of single β-cells was increased by N-cad/Fc and E-cad/Fc adhesion compared with control. In the presence of E-cad/Fc and after glucose stimulation, we showed that total insulin secretion was six times higher in spreading β-cells compared with round β-cells. Furthermore, cadherin-mediated adhesion induced an asymmetric distribution of cortical actin in β-cells. Our results demonstrate that adhesion of β-cells to E- and N-cadherins is regulated by insulin secretagogues and that E- and N-cadherin engagement promotes stimulated insulin secretion

    NLRP3 inflammasome is expressed and regulated in human islets

    No full text
    NRLP3 inflammasome is a protein complex involved in the maturation of IL1β. In the onset of type 1 diabetes as well as in islet transplantation, IL-1β is one of the cytokines involved in the recruitment of immune cells in islets and eventually in islet destruction. Whether IL-1β is produced by islet cells is still under debate and NLRP3 inflammasome-dependent IL-1β production has not been yet determined in human islets. The aim of this study was to determine the expression and the regulation of the NRLP3 inflammasome in human islets. Human islets were stimulated with LPS and successively with ATP (LPS + ATP) in the presence or absence of the inflammasome inhibitor glyburide. Islets were also incubated in hypoxic or normoxic conditions for 24 h in the presence or absence of glyburide. Then, IL1B and NLRP3 expression was studied by real time PCR, protein expression by western blot, protein localization by immunofluorescence and protein secretion by ELISA. LPS + ATP increased gene expression of NRLP3 and IL1B. Glyburide partially prevented this effect. IL-1β protein was localized in β and non-β cells. Moreover, LPS + ATP increased IL-1β protein expression and production, which were prevented by glyburide. Hypoxia increased gene expression of NRLP3 and IL1B and induced IL-1β and caspase-1 production. Finally, hypoxia-induced cell death which was not prevented by inhibition of NLRP3 inflammasome. NRLP3 inflammasome is expressed and plays a role in IL-1β production by human islets. By contrast, NRLP3 inflammasome activation is not involved in islet cell death induced by hypoxia

    Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic Ăź-cells: A potential beneficial effect in the pre-diabetic state?

    No full text
    Glucose homeostasis is determined by insulin secretion from the Ăź-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5'-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with Ăź-cell-targeted deletion of GDH (ĂźGlud1(-/-)). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ĂźGlud1(-/-) islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states

    Medical students perceptions and coping strategies during the first wave of the COVID-19 pandemic

    No full text
    AbstractData extract regarding the perception of the switch from summative assessments to mandatory formative assessment
    corecore